1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/**************************************************************************/
/*  main_timer_sync.cpp                                                   */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#include "main_timer_sync.h"

#include "core/math/math_funcs.h"
#include "core/os/os.h"

void MainFrameTime::clamp_idle(float min_idle_step, float max_idle_step) {
	if (idle_step < min_idle_step) {
		idle_step = min_idle_step;
	} else if (idle_step > max_idle_step) {
		idle_step = max_idle_step;
	}
}

/////////////////////////////////

void MainTimerSync::DeltaSmoother::update_refresh_rate_estimator(int64_t p_delta) {
	// the calling code should prevent 0 or negative values of delta
	// (preventing divide by zero)

	// note that if the estimate gets locked, and something external changes this
	// (e.g. user changes to non-vsync in the OS), then the results may be less than ideal,
	// but usually it will detect this via the FPS measurement and not attempt smoothing.
	// This should be a rare occurrence anyway, and will be cured next time user restarts game.
	if (_estimate_locked) {
		return;
	}

	// First average the delta over NUM_READINGS
	_estimator_total_delta += p_delta;
	_estimator_delta_readings++;

	const int NUM_READINGS = 60;

	if (_estimator_delta_readings < NUM_READINGS) {
		return;
	}

	// use average
	p_delta = _estimator_total_delta / NUM_READINGS;

	// reset the averager for next time
	_estimator_delta_readings = 0;
	_estimator_total_delta = 0;

	///////////////////////////////

	int fps = Math::round(1000000.0 / p_delta);

	// initial estimation, to speed up converging, special case we will estimate the refresh rate
	// from the first average FPS reading
	if (_estimated_fps == 0) {
		// below 50 might be chugging loading stuff, or else
		// dropping loads of frames, so the estimate will be inaccurate
		if (fps >= 50) {
			_estimated_fps = fps;
#ifdef GODOT_DEBUG_DELTA_SMOOTHER
			print_line("initial guess (average measured) refresh rate: " + itos(fps));
#endif
		} else {
			// can't get started until above 50
			return;
		}
	}

	// we hit our exact estimated refresh rate.
	// increase our confidence in the estimate.
	if (fps == _estimated_fps) {
		// note that each hit is an average of NUM_READINGS frames
		_hits_at_estimated++;

		if (_estimate_complete && _hits_at_estimated == 20) {
			_estimate_locked = true;
#ifdef GODOT_DEBUG_DELTA_SMOOTHER
			print_line("estimate LOCKED at " + itos(_estimated_fps) + " fps");
#endif
			return;
		}

		// if we are getting pretty confident in this estimate, decide it is complete
		// (it can still be increased later, and possibly lowered but only for a short time)
		if ((!_estimate_complete) && (_hits_at_estimated > 2)) {
			// when the estimate is complete we turn on smoothing
			if (_estimated_fps) {
				_estimate_complete = true;
				_vsync_delta = 1000000 / _estimated_fps;

#ifdef GODOT_DEBUG_DELTA_SMOOTHER
				print_line("estimate complete. vsync_delta " + itos(_vsync_delta) + ", fps " + itos(_estimated_fps));
#endif
			}
		}

#ifdef GODOT_DEBUG_DELTA_SMOOTHER
		if ((_hits_at_estimated % (400 / NUM_READINGS)) == 0) {
			String sz = "hits at estimated : " + itos(_hits_at_estimated) + ", above : " + itos(_hits_above_estimated) + "( " + itos(_hits_one_above_estimated) + " ), below : " + itos(_hits_below_estimated) + " (" + itos(_hits_one_below_estimated) + " )";

			print_line(sz);
		}
#endif

		return;
	}

	const int SIGNIFICANCE_UP = 1;
	const int SIGNIFICANCE_DOWN = 2;

	// we are not usually interested in slowing the estimate
	// but we may have overshot, so make it possible to reduce
	if (fps < _estimated_fps) {
		// micro changes
		if (fps == (_estimated_fps - 1)) {
			_hits_one_below_estimated++;

			if ((_hits_one_below_estimated > _hits_at_estimated) && (_hits_one_below_estimated > SIGNIFICANCE_DOWN)) {
				_estimated_fps--;
				made_new_estimate();
			}

			return;
		} else {
			_hits_below_estimated++;

			// don't allow large lowering if we are established at a refresh rate, as it will probably be dropped frames
			bool established = _estimate_complete && (_hits_at_estimated > 10);

			// macro changes
			// note there is a large barrier to macro lowering. That is because it is more likely to be dropped frames
			// than mis-estimation of the refresh rate.
			if (!established) {
				if (((_hits_below_estimated / 8) > _hits_at_estimated) && (_hits_below_estimated > SIGNIFICANCE_DOWN)) {
					// decrease the estimate
					_estimated_fps--;
					made_new_estimate();
				}
			}

			return;
		}
	}

	// Changes increasing the estimate.
	// micro changes
	if (fps == (_estimated_fps + 1)) {
		_hits_one_above_estimated++;

		if ((_hits_one_above_estimated > _hits_at_estimated) && (_hits_one_above_estimated > SIGNIFICANCE_UP)) {
			_estimated_fps++;
			made_new_estimate();
		}
		return;
	} else {
		_hits_above_estimated++;

		// macro changes
		if ((_hits_above_estimated > _hits_at_estimated) && (_hits_above_estimated > SIGNIFICANCE_UP)) {
			// increase the estimate
			int change = fps - _estimated_fps;
			change /= 2;
			change = MAX(1, change);

			_estimated_fps += change;
			made_new_estimate();
		}
		return;
	}
}

bool MainTimerSync::DeltaSmoother::fps_allows_smoothing(int64_t p_delta) {
	_measurement_time += p_delta;
	_measurement_frame_count++;

	if (_measurement_frame_count == _measurement_end_frame) {
		// only switch on or off if the estimate is complete
		if (_estimate_complete) {
			int64_t time_passed = _measurement_time - _measurement_start_time;

			// average delta
			time_passed /= MEASURE_FPS_OVER_NUM_FRAMES;

			// estimate fps
			if (time_passed) {
				double fps = 1000000.0 / time_passed;
				double ratio = fps / (double)_estimated_fps;

				//print_line("ratio : " + String(Variant(ratio)));

				if ((ratio > 0.95) && (ratio < 1.05)) {
					_measurement_allows_smoothing = true;
				} else {
					_measurement_allows_smoothing = false;
				}
			}
		} // estimate complete

		// new start time for next iteration
		_measurement_start_time = _measurement_time;
		_measurement_end_frame += MEASURE_FPS_OVER_NUM_FRAMES;
	}

	return _measurement_allows_smoothing;
}

int64_t MainTimerSync::DeltaSmoother::smooth_delta(int64_t p_delta) {
	// Conditions to disable smoothing.
	// Note that vsync is a request, it cannot be relied on, the OS may override this.
	// If the OS turns vsync on without vsync in the app, smoothing will not be enabled.
	// If the OS turns vsync off with sync enabled in the app, the smoothing must detect this
	// via the error metric and switch off.
	if (!OS::get_singleton()->is_delta_smoothing_enabled() || !OS::get_singleton()->is_vsync_enabled() || Engine::get_singleton()->is_editor_hint()) {
		return p_delta;
	}

	// Very important, ignore long deltas and pass them back unmodified.
	// This is to deal with resuming after suspend for long periods.
	if (p_delta > 1000000) {
		return p_delta;
	}

	// keep a running guesstimate of the FPS, and turn off smoothing if
	// conditions not close to the estimated FPS
	if (!fps_allows_smoothing(p_delta)) {
		return p_delta;
	}

	// we can't cope with negative deltas .. OS bug on some hardware
	// and also very small deltas caused by vsync being off.
	// This could possibly be part of a hiccup, this value isn't fixed in stone...
	if (p_delta < 1000) {
		return p_delta;
	}

	// note still some vsync off will still get through to this point...
	// and we need to cope with it by not converging the estimator / and / or not smoothing
	update_refresh_rate_estimator(p_delta);

	// no smoothing until we know what the refresh rate is
	if (!_estimate_complete) {
		return p_delta;
	}

	// accumulate the time we have available to use
	_leftover_time += p_delta;

	// how many vsyncs units can we fit?
	int64_t units = _leftover_time / _vsync_delta;

	// a delta must include minimum 1 vsync
	// (if it is less than that, it is either random error or we are no longer running at the vsync rate,
	// in which case we should switch off delta smoothing, or re-estimate the refresh rate)
	units = MAX(units, 1);

	_leftover_time -= units * _vsync_delta;
	// print_line("units " + itos(units) + ", leftover " + itos(_leftover_time/1000) + " ms");

	return units * _vsync_delta;
}

/////////////////////////////////////

// returns the fraction of p_frame_slice required for the timer to overshoot
// before advance_core considers changing the physics_steps return from
// the typical values as defined by typical_physics_steps
float MainTimerSync::get_physics_jitter_fix() {
	return Engine::get_singleton()->get_physics_jitter_fix();
}

// gets our best bet for the average number of physics steps per render frame
// return value: number of frames back this data is consistent
int MainTimerSync::get_average_physics_steps(float &p_min, float &p_max) {
	p_min = typical_physics_steps[0];
	p_max = p_min + 1;

	for (int i = 1; i < CONTROL_STEPS; ++i) {
		const float typical_lower = typical_physics_steps[i];
		const float current_min = typical_lower / (i + 1);
		if (current_min > p_max) {
			return i; // bail out if further restrictions would void the interval
		} else if (current_min > p_min) {
			p_min = current_min;
		}
		const float current_max = (typical_lower + 1) / (i + 1);
		if (current_max < p_min) {
			return i;
		} else if (current_max < p_max) {
			p_max = current_max;
		}
	}

	return CONTROL_STEPS;
}

// advance physics clock by p_idle_step, return appropriate number of steps to simulate
MainFrameTime MainTimerSync::advance_core(float p_frame_slice, int p_iterations_per_second, float p_idle_step) {
	MainFrameTime ret;

	ret.idle_step = p_idle_step;

	// simple determination of number of physics iteration
	time_accum += ret.idle_step;
	ret.physics_steps = floor(time_accum * p_iterations_per_second);

	int min_typical_steps = typical_physics_steps[0];
	int max_typical_steps = min_typical_steps + 1;

	// given the past recorded steps and typical steps to match, calculate bounds for this
	// step to be typical
	bool update_typical = false;

	for (int i = 0; i < CONTROL_STEPS - 1; ++i) {
		int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i];
		if (steps_left_to_match_typical > max_typical_steps ||<--- Assuming condition is false
				steps_left_to_match_typical + 1 < min_typical_steps) {
			update_typical = true;
			break;
		}

		if (steps_left_to_match_typical > min_typical_steps) {
			min_typical_steps = steps_left_to_match_typical;
		}
		if (steps_left_to_match_typical + 1 < max_typical_steps) {
			max_typical_steps = steps_left_to_match_typical + 1;
		}
	}

#ifdef DEBUG_ENABLED
	if (max_typical_steps < 0) {
		WARN_PRINT_ONCE("`max_typical_steps` is negative. This could hint at an engine bug or system timer misconfiguration.");
	}
#endif

	// try to keep it consistent with previous iterations
	if (ret.physics_steps < min_typical_steps) {
		const int max_possible_steps = floor((time_accum)*p_iterations_per_second + get_physics_jitter_fix());
		if (max_possible_steps < min_typical_steps) {
			ret.physics_steps = max_possible_steps;
			update_typical = true;
		} else {
			ret.physics_steps = min_typical_steps;
		}
	} else if (ret.physics_steps > max_typical_steps) {
		const int min_possible_steps = floor((time_accum)*p_iterations_per_second - get_physics_jitter_fix());
		if (min_possible_steps > max_typical_steps) {
			ret.physics_steps = min_possible_steps;
			update_typical = true;
		} else {
			ret.physics_steps = max_typical_steps;
		}
	}

	if (ret.physics_steps < 0) {
		ret.physics_steps = 0;
	}

	time_accum -= ret.physics_steps * p_frame_slice;

	// keep track of accumulated step counts
	for (int i = CONTROL_STEPS - 2; i >= 0; --i) {
		accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps;
	}
	accumulated_physics_steps[0] = ret.physics_steps;

	if (update_typical) {
		for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
			if (typical_physics_steps[i] > accumulated_physics_steps[i]) {
				typical_physics_steps[i] = accumulated_physics_steps[i];
			} else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) {
				typical_physics_steps[i] = accumulated_physics_steps[i] - 1;
			}
		}
	}

	return ret;<--- Uninitialized struct member: ret.interpolation_fraction<--- Uninitialized variable: ret.interpolation_fraction
}

// calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero
MainFrameTime MainTimerSync::advance_checked(float p_frame_slice, int p_iterations_per_second, float p_idle_step) {
	if (fixed_fps != -1) {
		p_idle_step = 1.0 / fixed_fps;
	}

	float min_output_step = p_idle_step / 8;
	min_output_step = MAX(min_output_step, 1E-6);

	// compensate for last deficit
	p_idle_step += time_deficit;

	MainFrameTime ret = advance_core(p_frame_slice, p_iterations_per_second, p_idle_step);

	// we will do some clamping on ret.idle_step and need to sync those changes to time_accum,
	// that's easiest if we just remember their fixed difference now
	const double idle_minus_accum = ret.idle_step - time_accum;

	// first, least important clamping: keep ret.idle_step consistent with typical_physics_steps.
	// this smoothes out the idle steps and culls small but quick variations.
	{
		float min_average_physics_steps, max_average_physics_steps;
		int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps);
		if (consistent_steps > 3) {
			ret.clamp_idle(min_average_physics_steps * p_frame_slice, max_average_physics_steps * p_frame_slice);
		}
	}

	// second clamping: keep abs(time_deficit) < jitter_fix * frame_slise
	float max_clock_deviation = get_physics_jitter_fix() * p_frame_slice;
	ret.clamp_idle(p_idle_step - max_clock_deviation, p_idle_step + max_clock_deviation);

	// last clamping: make sure time_accum is between 0 and p_frame_slice for consistency between physics and idle
	ret.clamp_idle(idle_minus_accum, idle_minus_accum + p_frame_slice);

	// all the operations above may have turned ret.idle_step negative or zero, keep a minimal value
	if (ret.idle_step < min_output_step) {
		ret.idle_step = min_output_step;
	}

	// restore time_accum
	time_accum = ret.idle_step - idle_minus_accum;

	// forcing ret.idle_step to be positive may trigger a violation of the
	// promise that time_accum is between 0 and p_frame_slice
#ifdef DEBUG_ENABLED
	if (time_accum < -1E-7) {
		WARN_PRINT_ONCE("Intermediate value of `time_accum` is negative. This could hint at an engine bug or system timer misconfiguration.");
	}
#endif

	if (time_accum > p_frame_slice) {
		const int extra_physics_steps = floor(time_accum * p_iterations_per_second);
		time_accum -= extra_physics_steps * p_frame_slice;
		ret.physics_steps += extra_physics_steps;
	}

#ifdef DEBUG_ENABLED
	if (time_accum < -1E-7) {
		WARN_PRINT_ONCE("Final value of `time_accum` is negative. It should always be between 0 and `p_physics_step`. This hints at an engine bug.");
	}
	if (time_accum > p_frame_slice + 1E-7) {
		WARN_PRINT_ONCE("Final value of `time_accum` is larger than `p_frame_slice`. It should always be between 0 and `p_frame_slice`. This hints at an engine bug.");
	}
#endif

	// track deficit
	time_deficit = p_idle_step - ret.idle_step;

	// p_frame_slice is 1.0 / iterations_per_sec
	// i.e. the time in seconds taken by a physics tick
	ret.interpolation_fraction = time_accum / p_frame_slice;

	return ret;
}

// determine wall clock step since last iteration
float MainTimerSync::get_cpu_idle_step() {
	uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec;
	last_cpu_ticks_usec = current_cpu_ticks_usec;

	cpu_ticks_elapsed = _delta_smoother.smooth_delta(cpu_ticks_elapsed);

	return cpu_ticks_elapsed / 1000000.0;
}

MainTimerSync::MainTimerSync() :
		last_cpu_ticks_usec(0),
		current_cpu_ticks_usec(0),
		time_accum(0),
		time_deficit(0),
		fixed_fps(0) {
	for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
		typical_physics_steps[i] = i;
		accumulated_physics_steps[i] = i;
	}
}

// start the clock
void MainTimerSync::init(uint64_t p_cpu_ticks_usec) {
	current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec;
}

// set measured wall clock time
void MainTimerSync::set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) {
	current_cpu_ticks_usec = p_cpu_ticks_usec;
}

void MainTimerSync::set_fixed_fps(int p_fixed_fps) {
	fixed_fps = p_fixed_fps;
}

// advance one frame, return timesteps to take
MainFrameTime MainTimerSync::advance(float p_frame_slice, int p_iterations_per_second) {
	float cpu_idle_step = get_cpu_idle_step();

	return advance_checked(p_frame_slice, p_iterations_per_second, cpu_idle_step);
}