1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473 | /**************************************************************************/
/* space_bullet.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "space_bullet.h"
#include "bullet_physics_server.h"
#include "bullet_types_converter.h"
#include "bullet_utilities.h"
#include "constraint_bullet.h"
#include "core/project_settings.h"
#include "core/ustring.h"
#include "godot_collision_configuration.h"
#include "godot_collision_dispatcher.h"
#include "rigid_body_bullet.h"
#include "servers/physics_server.h"
#include "soft_body_bullet.h"
#include <BulletCollision/BroadphaseCollision/btBroadphaseProxy.h>
#include <BulletCollision/CollisionDispatch/btCollisionObject.h>
#include <BulletCollision/CollisionDispatch/btGhostObject.h>
#include <BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h>
#include <BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h>
#include <BulletCollision/NarrowPhaseCollision/btPointCollector.h>
#include <BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h>
#include <BulletSoftBody/btSoftRigidDynamicsWorld.h>
#include <btBulletDynamicsCommon.h>
#include <assert.h>
/**
@author AndreaCatania
*/
BulletPhysicsDirectSpaceState::BulletPhysicsDirectSpaceState(SpaceBullet *p_space) :
PhysicsDirectSpaceState(),
space(p_space) {}
int BulletPhysicsDirectSpaceState::intersect_point(const Vector3 &p_point, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return 0;
}
btVector3 bt_point;
G_TO_B(p_point, bt_point);
btSphereShape sphere_point(0.001f);
btCollisionObject collision_object_point;
collision_object_point.setCollisionShape(&sphere_point);
collision_object_point.setWorldTransform(btTransform(btQuaternion::getIdentity(), bt_point));
// Setup query
GodotAllContactResultCallback btResult(&collision_object_point, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btResult.m_collisionFilterGroup = 0;
btResult.m_collisionFilterMask = p_collision_mask;
space->dynamicsWorld->contactTest(&collision_object_point, btResult);
// The results is already populated by GodotAllConvexResultCallback
return btResult.m_count;
}
bool BulletPhysicsDirectSpaceState::intersect_ray(const Vector3 &p_from, const Vector3 &p_to, RayResult &r_result, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_ray) {
btVector3 btVec_from;
btVector3 btVec_to;
G_TO_B(p_from, btVec_from);
G_TO_B(p_to, btVec_to);
// setup query
GodotClosestRayResultCallback btResult(btVec_from, btVec_to, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btResult.m_collisionFilterGroup = 0;
btResult.m_collisionFilterMask = p_collision_mask;
btResult.m_pickRay = p_pick_ray;
space->dynamicsWorld->rayTest(btVec_from, btVec_to, btResult);
if (btResult.hasHit()) {
B_TO_G(btResult.m_hitPointWorld, r_result.position);
B_TO_G(btResult.m_hitNormalWorld.normalize(), r_result.normal);
CollisionObjectBullet *gObj = static_cast<CollisionObjectBullet *>(btResult.m_collisionObject->getUserPointer());
if (gObj) {
r_result.shape = btResult.m_shapeId;
r_result.rid = gObj->get_self();
r_result.collider_id = gObj->get_instance_id();
r_result.collider = 0 == r_result.collider_id ? nullptr : ObjectDB::get_instance(r_result.collider_id);
} else {
WARN_PRINT("The raycast performed has hit a collision object that is not part of Godot scene, please check it.");
}
return true;
} else {
return false;
}
}
int BulletPhysicsDirectSpaceState::intersect_shape(const RID &p_shape, const Transform &p_xform, float p_margin, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return 0;
}
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
btCollisionShape *btShape = shape->create_bt_shape(p_xform.basis.get_scale_abs(), p_margin);
if (!btShape->isConvex()) {
bulletdelete(btShape);
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return 0;
}
btConvexShape *btConvex = static_cast<btConvexShape *>(btShape);
btTransform bt_xform;
G_TO_B(p_xform, bt_xform);
UNSCALE_BT_BASIS(bt_xform);
btCollisionObject collision_object;
collision_object.setCollisionShape(btConvex);
collision_object.setWorldTransform(bt_xform);
GodotAllContactResultCallback btQuery(&collision_object, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btQuery.m_collisionFilterGroup = 0;
btQuery.m_collisionFilterMask = p_collision_mask;
btQuery.m_closestDistanceThreshold = 0;
space->dynamicsWorld->contactTest(&collision_object, btQuery);
bulletdelete(btConvex);
return btQuery.m_count;
}
bool BulletPhysicsDirectSpaceState::cast_motion(const RID &p_shape, const Transform &p_xform, const Vector3 &p_motion, float p_margin, float &r_closest_safe, float &r_closest_unsafe, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, ShapeRestInfo *r_info) {
r_closest_safe = 0.0f;
r_closest_unsafe = 0.0f;
btVector3 bt_motion;
G_TO_B(p_motion, bt_motion);
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
ERR_FAIL_COND_V(!shape, false);
btCollisionShape *btShape = shape->create_bt_shape(p_xform.basis.get_scale(), p_margin);
if (!btShape->isConvex()) {
bulletdelete(btShape);
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return false;
}
btConvexShape *bt_convex_shape = static_cast<btConvexShape *>(btShape);
btTransform bt_xform_from;
G_TO_B(p_xform, bt_xform_from);
UNSCALE_BT_BASIS(bt_xform_from);
btTransform bt_xform_to(bt_xform_from);
bt_xform_to.getOrigin() += bt_motion;
if ((bt_xform_to.getOrigin() - bt_xform_from.getOrigin()).fuzzyZero()) {
r_closest_safe = 1.0f;
r_closest_unsafe = 1.0f;
bulletdelete(btShape);
return true;
}
GodotClosestConvexResultCallback btResult(bt_xform_from.getOrigin(), bt_xform_to.getOrigin(), &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btResult.m_collisionFilterGroup = 0;
btResult.m_collisionFilterMask = p_collision_mask;
space->dynamicsWorld->convexSweepTest(bt_convex_shape, bt_xform_from, bt_xform_to, btResult, space->dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration);
if (btResult.hasHit()) {
const btScalar l = bt_motion.length();
r_closest_unsafe = btResult.m_closestHitFraction;
r_closest_safe = MAX(r_closest_unsafe - (1 - ((l - 0.01) / l)), 0);
if (r_info) {
if (btCollisionObject::CO_RIGID_BODY == btResult.m_hitCollisionObject->getInternalType()) {
B_TO_G(static_cast<const btRigidBody *>(btResult.m_hitCollisionObject)->getVelocityInLocalPoint(btResult.m_hitPointWorld), r_info->linear_velocity);
}
CollisionObjectBullet *collision_object = static_cast<CollisionObjectBullet *>(btResult.m_hitCollisionObject->getUserPointer());
B_TO_G(btResult.m_hitPointWorld, r_info->point);
B_TO_G(btResult.m_hitNormalWorld, r_info->normal);
r_info->rid = collision_object->get_self();
r_info->collider_id = collision_object->get_instance_id();
r_info->shape = btResult.m_shapeId;
}
} else {
r_closest_safe = 1.0f;
r_closest_unsafe = 1.0f;
}
bulletdelete(bt_convex_shape);
return true; // Mean success
}
/// Returns the list of contacts pairs in this order: Local contact, other body contact
bool BulletPhysicsDirectSpaceState::collide_shape(RID p_shape, const Transform &p_shape_xform, float p_margin, Vector3 *r_results, int p_result_max, int &r_result_count, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return false;
}
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
ERR_FAIL_COND_V(!shape, false);
btCollisionShape *btShape = shape->create_bt_shape(p_shape_xform.basis.get_scale_abs(), p_margin);
if (!btShape->isConvex()) {
bulletdelete(btShape);
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return false;
}
btConvexShape *btConvex = static_cast<btConvexShape *>(btShape);
btTransform bt_xform;
G_TO_B(p_shape_xform, bt_xform);
UNSCALE_BT_BASIS(bt_xform);
btCollisionObject collision_object;
collision_object.setCollisionShape(btConvex);
collision_object.setWorldTransform(bt_xform);
GodotContactPairContactResultCallback btQuery(&collision_object, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btQuery.m_collisionFilterGroup = 0;
btQuery.m_collisionFilterMask = p_collision_mask;
btQuery.m_closestDistanceThreshold = 0;
space->dynamicsWorld->contactTest(&collision_object, btQuery);
r_result_count = btQuery.m_count;
bulletdelete(btConvex);
return btQuery.m_count;
}
bool BulletPhysicsDirectSpaceState::rest_info(RID p_shape, const Transform &p_shape_xform, float p_margin, ShapeRestInfo *r_info, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
ERR_FAIL_COND_V(!shape, false);
btCollisionShape *btShape = shape->create_bt_shape(p_shape_xform.basis.get_scale_abs(), p_margin);
if (!btShape->isConvex()) {
bulletdelete(btShape);
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return false;
}
btConvexShape *btConvex = static_cast<btConvexShape *>(btShape);
btTransform bt_xform;
G_TO_B(p_shape_xform, bt_xform);
UNSCALE_BT_BASIS(bt_xform);
btCollisionObject collision_object;
collision_object.setCollisionShape(btConvex);
collision_object.setWorldTransform(bt_xform);
GodotRestInfoContactResultCallback btQuery(&collision_object, r_info, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btQuery.m_collisionFilterGroup = 0;
btQuery.m_collisionFilterMask = p_collision_mask;
btQuery.m_closestDistanceThreshold = 0;
space->dynamicsWorld->contactTest(&collision_object, btQuery);
bulletdelete(btConvex);
if (btQuery.m_collided) {
if (btCollisionObject::CO_RIGID_BODY == btQuery.m_rest_info_collision_object->getInternalType()) {
B_TO_G(static_cast<const btRigidBody *>(btQuery.m_rest_info_collision_object)->getVelocityInLocalPoint(btQuery.m_rest_info_bt_point), r_info->linear_velocity);
}
B_TO_G(btQuery.m_rest_info_bt_point, r_info->point);
}
return btQuery.m_collided;
}
Vector3 BulletPhysicsDirectSpaceState::get_closest_point_to_object_volume(RID p_object, const Vector3 p_point) const {
RigidCollisionObjectBullet *rigid_object = space->get_physics_server()->get_rigid_collision_object(p_object);
ERR_FAIL_COND_V(!rigid_object, Vector3());
btVector3 out_closest_point(0, 0, 0);
btScalar out_distance = 1e20;
btVector3 bt_point;
G_TO_B(p_point, bt_point);
btSphereShape point_shape(0.);
btCollisionShape *shape;<--- The scope of the variable 'shape' can be reduced. [+]The scope of the variable 'shape' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
btConvexShape *convex_shape;
btTransform child_transform;
btTransform body_transform(rigid_object->get_bt_collision_object()->getWorldTransform());
btGjkPairDetector::ClosestPointInput input;
input.m_transformA.getBasis().setIdentity();
input.m_transformA.setOrigin(bt_point);
bool shapes_found = false;
for (int i = rigid_object->get_shape_count() - 1; 0 <= i; --i) {
shape = rigid_object->get_bt_shape(i);
if (shape->isConvex()) {
child_transform = rigid_object->get_bt_shape_transform(i);
convex_shape = static_cast<btConvexShape *>(shape);
input.m_transformB = body_transform * child_transform;
btPointCollector result;
btGjkPairDetector gjk_pair_detector(&point_shape, convex_shape, space->gjk_simplex_solver, space->gjk_epa_pen_solver);
gjk_pair_detector.getClosestPoints(input, result, nullptr);
if (out_distance > result.m_distance) {
out_distance = result.m_distance;
out_closest_point = result.m_pointInWorld;
}
}
shapes_found = true;
}
if (shapes_found) {
Vector3 out;
B_TO_G(out_closest_point, out);
return out;
} else {
// no shapes found, use distance to origin.
return rigid_object->get_transform().get_origin();
}
}
SpaceBullet::SpaceBullet() :
broadphase(nullptr),
collisionConfiguration(nullptr),
dispatcher(nullptr),
solver(nullptr),
dynamicsWorld(nullptr),
soft_body_world_info(nullptr),
ghostPairCallback(nullptr),
godotFilterCallback(nullptr),
gravityDirection(0, -1, 0),
gravityMagnitude(10),
linear_damp(0.0),
angular_damp(0.0),
contactDebugCount(0),
delta_time(0.) {
create_empty_world(GLOBAL_DEF("physics/3d/active_soft_world", true));
direct_access = memnew(BulletPhysicsDirectSpaceState(this));
}
SpaceBullet::~SpaceBullet() {
memdelete(direct_access);
destroy_world();
}
void SpaceBullet::flush_queries() {
const btCollisionObjectArray &colObjArray = dynamicsWorld->getCollisionObjectArray();
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->dispatch_callbacks();
}
}
void SpaceBullet::step(real_t p_delta_time) {
delta_time = p_delta_time;
dynamicsWorld->stepSimulation(p_delta_time, 0, 0);
}
void SpaceBullet::set_param(PhysicsServer::AreaParameter p_param, const Variant &p_value) {
assert(dynamicsWorld);
switch (p_param) {
case PhysicsServer::AREA_PARAM_GRAVITY:
gravityMagnitude = p_value;
update_gravity();
break;
case PhysicsServer::AREA_PARAM_GRAVITY_VECTOR:
gravityDirection = p_value;
update_gravity();
break;
case PhysicsServer::AREA_PARAM_LINEAR_DAMP:
linear_damp = p_value;
break;
case PhysicsServer::AREA_PARAM_ANGULAR_DAMP:
angular_damp = p_value;
break;
case PhysicsServer::AREA_PARAM_PRIORITY:
// Priority is always 0, the lower
break;
case PhysicsServer::AREA_PARAM_GRAVITY_IS_POINT:
case PhysicsServer::AREA_PARAM_GRAVITY_DISTANCE_SCALE:
case PhysicsServer::AREA_PARAM_GRAVITY_POINT_ATTENUATION:
break;
default:
WARN_PRINT("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
break;
}
}
Variant SpaceBullet::get_param(PhysicsServer::AreaParameter p_param) {
switch (p_param) {
case PhysicsServer::AREA_PARAM_GRAVITY:
return gravityMagnitude;
case PhysicsServer::AREA_PARAM_GRAVITY_VECTOR:
return gravityDirection;
case PhysicsServer::AREA_PARAM_LINEAR_DAMP:
return linear_damp;
case PhysicsServer::AREA_PARAM_ANGULAR_DAMP:
return angular_damp;
case PhysicsServer::AREA_PARAM_PRIORITY:
return 0; // Priority is always 0, the lower
case PhysicsServer::AREA_PARAM_GRAVITY_IS_POINT:
return false;
case PhysicsServer::AREA_PARAM_GRAVITY_DISTANCE_SCALE:
return 0;
case PhysicsServer::AREA_PARAM_GRAVITY_POINT_ATTENUATION:
return 0;
default:
WARN_PRINT("This get parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
return Variant();
}
}
void SpaceBullet::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) {
switch (p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
default:
WARN_PRINT("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
break;
}
}
real_t SpaceBullet::get_param(PhysicsServer::SpaceParameter p_param) {
switch (p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
default:
WARN_PRINT("The SpaceBullet doesn't support this get parameter (" + itos(p_param) + "), 0 is returned.");
return 0.f;
}
}
void SpaceBullet::add_area(AreaBullet *p_area) {
areas.push_back(p_area);
dynamicsWorld->addCollisionObject(p_area->get_bt_ghost(), p_area->get_collision_layer(), p_area->get_collision_mask());
}
void SpaceBullet::remove_area(AreaBullet *p_area) {
areas.erase(p_area);
dynamicsWorld->removeCollisionObject(p_area->get_bt_ghost());
}
void SpaceBullet::reload_collision_filters(AreaBullet *p_area) {
btGhostObject *ghost_object = p_area->get_bt_ghost();
btBroadphaseProxy *ghost_proxy = ghost_object->getBroadphaseHandle();
ghost_proxy->m_collisionFilterGroup = p_area->get_collision_layer();
ghost_proxy->m_collisionFilterMask = p_area->get_collision_mask();
dynamicsWorld->refreshBroadphaseProxy(ghost_object);
}
void SpaceBullet::add_rigid_body(RigidBodyBullet *p_body) {
if (p_body->is_static()) {
dynamicsWorld->addCollisionObject(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
} else {
dynamicsWorld->addRigidBody(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
p_body->scratch_space_override_modificator();
}
}
void SpaceBullet::remove_rigid_body_constraints(RigidBodyBullet *p_body) {
btRigidBody *btBody = p_body->get_bt_rigid_body();
int constraints = btBody->getNumConstraintRefs();
if (constraints > 0) {
ERR_PRINT("A body connected to joints was removed.");
for (int i = 0; i < constraints; i++) {
dynamicsWorld->removeConstraint(btBody->getConstraintRef(i));
}
}
}
void SpaceBullet::remove_rigid_body(RigidBodyBullet *p_body) {
btRigidBody *btBody = p_body->get_bt_rigid_body();
if (p_body->is_static()) {
dynamicsWorld->removeCollisionObject(btBody);
} else {
dynamicsWorld->removeRigidBody(btBody);
}
}
void SpaceBullet::reload_collision_filters(RigidBodyBullet *p_body) {
btRigidBody *rigid_body = p_body->get_bt_rigid_body();
btBroadphaseProxy *body_proxy = rigid_body->getBroadphaseProxy();
body_proxy->m_collisionFilterGroup = p_body->get_collision_layer();
body_proxy->m_collisionFilterMask = p_body->get_collision_mask();
dynamicsWorld->refreshBroadphaseProxy(rigid_body);
}
void SpaceBullet::add_soft_body(SoftBodyBullet *p_body) {
if (is_using_soft_world()) {
if (p_body->get_bt_soft_body()) {
p_body->get_bt_soft_body()->m_worldInfo = get_soft_body_world_info();
static_cast<btSoftRigidDynamicsWorld *>(dynamicsWorld)->addSoftBody(p_body->get_bt_soft_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
}
} else {
ERR_PRINT("This soft body can't be added to non soft world");
}
}
void SpaceBullet::remove_soft_body(SoftBodyBullet *p_body) {
if (is_using_soft_world()) {
if (p_body->get_bt_soft_body()) {
static_cast<btSoftRigidDynamicsWorld *>(dynamicsWorld)->removeSoftBody(p_body->get_bt_soft_body());
p_body->get_bt_soft_body()->m_worldInfo = nullptr;
}
}
}
void SpaceBullet::reload_collision_filters(SoftBodyBullet *p_body) {
// This is necessary to change collision filter
remove_soft_body(p_body);
add_soft_body(p_body);
}
void SpaceBullet::add_constraint(ConstraintBullet *p_constraint, bool disableCollisionsBetweenLinkedBodies) {
p_constraint->set_space(this);
dynamicsWorld->addConstraint(p_constraint->get_bt_constraint(), disableCollisionsBetweenLinkedBodies);
}
void SpaceBullet::remove_constraint(ConstraintBullet *p_constraint) {
dynamicsWorld->removeConstraint(p_constraint->get_bt_constraint());
}
int SpaceBullet::get_num_collision_objects() const {
return dynamicsWorld->getNumCollisionObjects();
}
void SpaceBullet::remove_all_collision_objects() {
for (int i = dynamicsWorld->getNumCollisionObjects() - 1; 0 <= i; --i) {
btCollisionObject *btObj = dynamicsWorld->getCollisionObjectArray()[i];
CollisionObjectBullet *colObj = static_cast<CollisionObjectBullet *>(btObj->getUserPointer());
colObj->set_space(nullptr);
}
}
void onBulletPreTickCallback(btDynamicsWorld *p_dynamicsWorld, btScalar timeStep) {
static_cast<SpaceBullet *>(p_dynamicsWorld->getWorldUserInfo())->flush_queries();
}
void onBulletTickCallback(btDynamicsWorld *p_dynamicsWorld, btScalar timeStep) {
const btCollisionObjectArray &colObjArray = p_dynamicsWorld->getCollisionObjectArray();
// Notify all Collision objects the collision checker is started
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->on_collision_checker_start();
}
SpaceBullet *sb = static_cast<SpaceBullet *>(p_dynamicsWorld->getWorldUserInfo());
sb->check_ghost_overlaps();
sb->check_body_collision();
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->on_collision_checker_end();
}
}
BulletPhysicsDirectSpaceState *SpaceBullet::get_direct_state() {
return direct_access;
}
btScalar calculateGodotCombinedRestitution(const btCollisionObject *body0, const btCollisionObject *body1) {
return CLAMP(body0->getRestitution() + body1->getRestitution(), 0, 1);
}
btScalar calculateGodotCombinedFriction(const btCollisionObject *body0, const btCollisionObject *body1) {
return ABS(MIN(body0->getFriction(), body1->getFriction()));
}
void SpaceBullet::create_empty_world(bool p_create_soft_world) {
gjk_epa_pen_solver = bulletnew(btGjkEpaPenetrationDepthSolver);
gjk_simplex_solver = bulletnew(btVoronoiSimplexSolver);
void *world_mem;
if (p_create_soft_world) {
world_mem = malloc(sizeof(btSoftRigidDynamicsWorld));
} else {
world_mem = malloc(sizeof(btDiscreteDynamicsWorld));
}
ERR_FAIL_COND_MSG(!world_mem, "Out of memory.");
if (p_create_soft_world) {
collisionConfiguration = bulletnew(GodotSoftCollisionConfiguration(static_cast<btDiscreteDynamicsWorld *>(world_mem)));
} else {
collisionConfiguration = bulletnew(GodotCollisionConfiguration(static_cast<btDiscreteDynamicsWorld *>(world_mem)));
}
dispatcher = bulletnew(GodotCollisionDispatcher(collisionConfiguration));
broadphase = bulletnew(btDbvtBroadphase);
solver = bulletnew(btSequentialImpulseConstraintSolver);
if (p_create_soft_world) {
dynamicsWorld = new (world_mem) btSoftRigidDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
soft_body_world_info = bulletnew(btSoftBodyWorldInfo);
} else {
dynamicsWorld = new (world_mem) btDiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
}
ghostPairCallback = bulletnew(btGhostPairCallback);
godotFilterCallback = bulletnew(GodotFilterCallback);
gCalculateCombinedRestitutionCallback = &calculateGodotCombinedRestitution;
gCalculateCombinedFrictionCallback = &calculateGodotCombinedFriction;
gContactAddedCallback = &godotContactAddedCallback;
dynamicsWorld->setWorldUserInfo(this);
dynamicsWorld->setInternalTickCallback(onBulletPreTickCallback, this, true);
dynamicsWorld->setInternalTickCallback(onBulletTickCallback, this, false);
dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(ghostPairCallback); // Setup ghost check
dynamicsWorld->getPairCache()->setOverlapFilterCallback(godotFilterCallback);
if (soft_body_world_info) {
soft_body_world_info->m_broadphase = broadphase;
soft_body_world_info->m_dispatcher = dispatcher;
soft_body_world_info->m_sparsesdf.Initialize();
}
update_gravity();
}
void SpaceBullet::destroy_world() {
/// The world elements (like: Collision Objects, Constraints, Shapes) are managed by godot
dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(nullptr);
dynamicsWorld->getPairCache()->setOverlapFilterCallback(nullptr);
bulletdelete(ghostPairCallback);
bulletdelete(godotFilterCallback);
// Deallocate world
dynamicsWorld->~btDiscreteDynamicsWorld();
free(dynamicsWorld);
dynamicsWorld = nullptr;
bulletdelete(solver);
bulletdelete(broadphase);
bulletdelete(dispatcher);
bulletdelete(collisionConfiguration);
bulletdelete(soft_body_world_info);
bulletdelete(gjk_simplex_solver);
bulletdelete(gjk_epa_pen_solver);
}
void SpaceBullet::check_ghost_overlaps() {
// For each area
for (int area_idx = 0; area_idx < areas.size(); area_idx++) {
AreaBullet *area = areas[area_idx];
if (!area->is_monitoring()) {
continue;
}
btGhostObject *bt_ghost = area->get_bt_ghost();
const btTransform &area_transform = area->get_transform__bullet();
const btVector3 &area_scale(area->get_bt_body_scale());
// Mark all current overlapping shapes dirty.
area->mark_all_overlaps_dirty();
// Broadphase
const btAlignedObjectArray<btCollisionObject *> overlapping_pairs = bt_ghost->getOverlappingPairs();
// Narrowphase
for (int pair_idx = 0; pair_idx < overlapping_pairs.size(); pair_idx++) {
btCollisionObject *other_bt_collision_object = overlapping_pairs[pair_idx];
RigidCollisionObjectBullet *other_object = static_cast<RigidCollisionObjectBullet *>(other_bt_collision_object->getUserPointer());
const btTransform &other_transform = other_object->get_transform__bullet();
const btVector3 &other_scale(other_object->get_bt_body_scale());
if (!area->is_updated() && !other_object->is_updated()) {
area->mark_object_overlaps_inside(other_object);
continue;
}
if (other_bt_collision_object->getUserIndex() == CollisionObjectBullet::TYPE_AREA) {
if (!static_cast<AreaBullet *>(other_bt_collision_object->getUserPointer())->is_monitorable()) {
continue;
}
} else if (other_bt_collision_object->getUserIndex() != CollisionObjectBullet::TYPE_RIGID_BODY) {
continue;
}
// For each area shape
for (int our_shape_id = 0; our_shape_id < area->get_shape_count(); our_shape_id++) {
btCollisionShape *area_shape = area->get_bt_shape(our_shape_id);
if (!area_shape->isConvex()) {
continue;
}
btConvexShape *area_convex_shape = static_cast<btConvexShape *>(area_shape);
btTransform area_shape_transform(area->get_bt_shape_transform(our_shape_id));
area_shape_transform.getOrigin() *= area_scale;
btGjkPairDetector::ClosestPointInput gjk_input;
gjk_input.m_transformA = area_transform * area_shape_transform;
// For each other object shape
for (int other_shape_id = 0; other_shape_id < other_object->get_shape_count(); other_shape_id++) {
btCollisionShape *other_shape = other_object->get_bt_shape(other_shape_id);
btTransform other_shape_transform(other_object->get_bt_shape_transform(other_shape_id));
other_shape_transform.getOrigin() *= other_scale;
gjk_input.m_transformB = other_transform * other_shape_transform;
if (other_shape->isConvex()) {
btPointCollector result;
btGjkPairDetector gjk_pair_detector(
area_convex_shape,
static_cast<btConvexShape *>(other_shape),
gjk_simplex_solver,
gjk_epa_pen_solver);
gjk_pair_detector.getClosestPoints(gjk_input, result, 0);
if (result.m_distance <= 0) {
area->set_overlap(other_object, other_shape_id, our_shape_id);
}
} else { // Other shape is not convex.
btCollisionObjectWrapper obA(NULL, area_convex_shape, bt_ghost, gjk_input.m_transformA, -1, our_shape_id);
btCollisionObjectWrapper obB(NULL, other_shape, other_bt_collision_object, gjk_input.m_transformB, -1, other_shape_id);
btCollisionAlgorithm *algorithm = dispatcher->findAlgorithm(&obA, &obB, NULL, BT_CONTACT_POINT_ALGORITHMS);
if (!algorithm) {
continue;
}
GodotDeepPenetrationContactResultCallback contactPointResult(&obA, &obB);
algorithm->processCollision(&obA, &obB, dynamicsWorld->getDispatchInfo(), &contactPointResult);
algorithm->~btCollisionAlgorithm();
dispatcher->freeCollisionAlgorithm(algorithm);
if (contactPointResult.hasHit()) {
area->set_overlap(other_object, our_shape_id, other_shape_id);
}
}
} // End for each other object shape
} // End for each area shape
} // End for each overlapping pair
// All overlapping shapes still marked dirty must have exited.
area->mark_all_dirty_overlaps_as_exit();
} // End for each area
}
void SpaceBullet::check_body_collision() {
#ifdef DEBUG_ENABLED
reset_debug_contact_count();
#endif
const int numManifolds = dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numManifolds; ++i) {
btPersistentManifold *contactManifold = dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
// I know this static cast is a bit risky. But I'm checking its type just after it.
// This allow me to avoid a lot of other cast and checks
RigidBodyBullet *bodyA = static_cast<RigidBodyBullet *>(contactManifold->getBody0()->getUserPointer());
RigidBodyBullet *bodyB = static_cast<RigidBodyBullet *>(contactManifold->getBody1()->getUserPointer());
if (CollisionObjectBullet::TYPE_RIGID_BODY == bodyA->getType() && CollisionObjectBullet::TYPE_RIGID_BODY == bodyB->getType()) {
if (!bodyA->can_add_collision() && !bodyB->can_add_collision()) {
continue;
}
const int numContacts = contactManifold->getNumContacts();
/// Since I don't need report all contacts for these objects,
/// So report only the first
#define REPORT_ALL_CONTACTS 0
#if REPORT_ALL_CONTACTS
for (int j = 0; j < numContacts; j++) {
btManifoldPoint &pt = contactManifold->getContactPoint(j);
#else
if (numContacts) {
btManifoldPoint &pt = contactManifold->getContactPoint(0);
#endif
if (
pt.getDistance() < 0.0 ||
bodyA->was_colliding(bodyB) ||
bodyB->was_colliding(bodyA)) {
Vector3 collisionWorldPosition;
Vector3 collisionLocalPosition;
Vector3 normalOnB;
float appliedImpulse = pt.m_appliedImpulse;
B_TO_G(pt.m_normalWorldOnB, normalOnB);
// The pt.m_index only contains the shape index when more than one collision shape is used
// and only if the collision shape is not a concave collision shape.
// A value of -1 in pt.m_partId indicates the pt.m_index is a shape index.
int shape_index_a = 0;
if (bodyA->get_shape_count() > 1 && pt.m_partId0 == -1) {
shape_index_a = pt.m_index0;
}
int shape_index_b = 0;
if (bodyB->get_shape_count() > 1 && pt.m_partId1 == -1) {
shape_index_b = pt.m_index1;
}
if (bodyA->can_add_collision()) {
B_TO_G(pt.getPositionWorldOnB(), collisionWorldPosition);
/// pt.m_localPointB Doesn't report the exact point in local space
B_TO_G(pt.getPositionWorldOnB() - contactManifold->getBody1()->getWorldTransform().getOrigin(), collisionLocalPosition);
bodyA->add_collision_object(bodyB, collisionWorldPosition, collisionLocalPosition, normalOnB, appliedImpulse, shape_index_b, shape_index_a);
}
if (bodyB->can_add_collision()) {
B_TO_G(pt.getPositionWorldOnA(), collisionWorldPosition);
/// pt.m_localPointA Doesn't report the exact point in local space
B_TO_G(pt.getPositionWorldOnA() - contactManifold->getBody0()->getWorldTransform().getOrigin(), collisionLocalPosition);
bodyB->add_collision_object(bodyA, collisionWorldPosition, collisionLocalPosition, normalOnB * -1, appliedImpulse * -1, shape_index_a, shape_index_b);
}
#ifdef DEBUG_ENABLED
if (is_debugging_contacts()) {
add_debug_contact(collisionWorldPosition);
}
#endif
}
}
}
}
}
void SpaceBullet::update_gravity() {
btVector3 btGravity;
G_TO_B(gravityDirection * gravityMagnitude, btGravity);
//dynamicsWorld->setGravity(btGravity);
dynamicsWorld->setGravity(btVector3(0, 0, 0));
if (soft_body_world_info) {
soft_body_world_info->m_gravity = btGravity;
}
}
/// IMPORTANT: Please don't turn it ON this is not managed correctly!!
/// I'm leaving this here just for future tests.
/// Debug motion and normal vector drawing
#define debug_test_motion 0
#define RECOVERING_MOVEMENT_SCALE 0.4
#define RECOVERING_MOVEMENT_CYCLES 4
#if debug_test_motion
#include "scene/3d/immediate_geometry.h"
static ImmediateGeometry *motionVec(NULL);
static ImmediateGeometry *normalLine(NULL);
static Ref<Material3D> red_mat;
static Ref<SpatialMaterial> blue_mat;
#endif
bool SpaceBullet::test_body_motion(RigidBodyBullet *p_body, const Transform &p_from, const Vector3 &p_motion, bool p_infinite_inertia, PhysicsServer::MotionResult *r_result, bool p_exclude_raycast_shapes, const Set<RID> &p_exclude) {
#if debug_test_motion
/// Yes I know this is not good, but I've used it as fast debugging hack.
/// I'm leaving it here just for speedup the other eventual debugs
if (!normalLine) {
motionVec = memnew(ImmediateGeometry);
normalLine = memnew(ImmediateGeometry);
SceneTree::get_singleton()->get_current_scene()->add_child(motionVec);
SceneTree::get_singleton()->get_current_scene()->add_child(normalLine);
motionVec->set_as_toplevel(true);
normalLine->set_as_toplevel(true);
red_mat = Ref<Material3D>(memnew(SpatialMaterial));
red_mat->set_flag(Material3D::FLAG_UNSHADED, true);
red_mat->set_line_width(20.0);
red_mat->set_feature(Material3D::FEATURE_TRANSPARENT, true);
red_mat->set_flag(Material3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
red_mat->set_flag(Material3D::FLAG_SRGB_VERTEX_COLOR, true);
red_mat->set_albedo(Color(1, 0, 0, 1));
motionVec->set_material_override(red_mat);
blue_mat = Ref<Material3D>(memnew(SpatialMaterial));
blue_mat->set_flag(Material3D::FLAG_UNSHADED, true);
blue_mat->set_line_width(20.0);
blue_mat->set_feature(Material3D::FEATURE_TRANSPARENT, true);
blue_mat->set_flag(Material3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
blue_mat->set_flag(Material3D::FLAG_SRGB_VERTEX_COLOR, true);
blue_mat->set_albedo(Color(0, 0, 1, 1));
normalLine->set_material_override(blue_mat);
}
#endif
btTransform body_transform;
G_TO_B(p_from, body_transform);
UNSCALE_BT_BASIS(body_transform);
if (!p_body->get_kinematic_utilities()) {
p_body->init_kinematic_utilities();
}
btVector3 initial_recover_motion(0, 0, 0);
{ /// Phase one - multi shapes depenetration using margin
for (int t(RECOVERING_MOVEMENT_CYCLES); 0 < t; --t) {
if (!recover_from_penetration(p_body, body_transform, RECOVERING_MOVEMENT_SCALE, p_infinite_inertia, initial_recover_motion, nullptr, p_exclude)) {
break;
}
}
// Add recover movement in order to make it safe
body_transform.getOrigin() += initial_recover_motion;
}
btVector3 motion;
G_TO_B(p_motion, motion);
real_t total_length = motion.length();
real_t unsafe_fraction = 1.0;
real_t safe_fraction = 1.0;
{
// Phase two - sweep test, from a secure position without margin
const int shape_count(p_body->get_shape_count());
#if debug_test_motion
Vector3 sup_line;
B_TO_G(body_safe_position.getOrigin(), sup_line);
motionVec->clear();
motionVec->begin(Mesh::PRIMITIVE_LINES, NULL);
motionVec->add_vertex(sup_line);
motionVec->add_vertex(sup_line + p_motion * 10);
motionVec->end();
#endif
for (int shIndex = 0; shIndex < shape_count; ++shIndex) {
if (p_body->is_shape_disabled(shIndex)) {
continue;
}
if (!p_body->get_bt_shape(shIndex)->isConvex()) {
// Skip no convex shape
continue;
}
if (p_exclude_raycast_shapes && p_body->get_bt_shape(shIndex)->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) {
// Skip rayshape in order to implement custom separation process
continue;
}
btConvexShape *convex_shape_test(static_cast<btConvexShape *>(p_body->get_bt_shape(shIndex)));
btTransform shape_world_from = body_transform * p_body->get_kinematic_utilities()->shapes[shIndex].transform;
btTransform shape_world_to(shape_world_from);
shape_world_to.getOrigin() += motion;
if ((shape_world_to.getOrigin() - shape_world_from.getOrigin()).fuzzyZero()) {
motion = btVector3(0, 0, 0);
break;
}
GodotKinClosestConvexResultCallback btResult(shape_world_from.getOrigin(), shape_world_to.getOrigin(), p_body, p_infinite_inertia, &p_exclude);
btResult.m_collisionFilterGroup = p_body->get_collision_layer();
btResult.m_collisionFilterMask = p_body->get_collision_mask();
dynamicsWorld->convexSweepTest(convex_shape_test, shape_world_from, shape_world_to, btResult, dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration);
if (btResult.hasHit()) {
if (total_length > CMP_EPSILON) {
real_t hit_fraction = btResult.m_closestHitFraction * motion.length() / total_length;
if (hit_fraction < unsafe_fraction) {
unsafe_fraction = hit_fraction;
real_t margin = p_body->get_kinematic_utilities()->safe_margin;
safe_fraction = MAX(hit_fraction - (1 - ((total_length - margin) / total_length)), 0);
}
}
/// Since for each sweep test I fix the motion of new shapes in base the recover result,
/// if another shape will hit something it means that has a deepest penetration respect the previous shape
motion *= btResult.m_closestHitFraction;
}
}
body_transform.getOrigin() += motion;
}
bool has_penetration = false;
{ /// Phase three - contact test with margin
btVector3 __rec(0, 0, 0);
RecoverResult r_recover_result;
has_penetration = recover_from_penetration(p_body, body_transform, 1, p_infinite_inertia, __rec, &r_recover_result, p_exclude);
// Parse results
if (r_result) {
B_TO_G(motion + initial_recover_motion + __rec, r_result->motion);
if (has_penetration) {
const btRigidBody *btRigid = static_cast<const btRigidBody *>(r_recover_result.other_collision_object);
CollisionObjectBullet *collisionObject = static_cast<CollisionObjectBullet *>(btRigid->getUserPointer());
B_TO_G(motion, r_result->remainder); // is the remaining movements
r_result->remainder = p_motion - r_result->remainder;
B_TO_G(r_recover_result.pointWorld, r_result->collision_point);
B_TO_G(r_recover_result.normal, r_result->collision_normal);
B_TO_G(btRigid->getVelocityInLocalPoint(r_recover_result.pointWorld - btRigid->getWorldTransform().getOrigin()), r_result->collider_velocity); // It calculates velocity at point and assign it using special function Bullet_to_Godot
r_result->collider = collisionObject->get_self();
r_result->collider_id = collisionObject->get_instance_id();
r_result->collider_shape = r_recover_result.other_compound_shape_index;
r_result->collision_local_shape = r_recover_result.local_shape_most_recovered;
r_result->collision_depth = Math::abs(r_recover_result.penetration_distance);
r_result->collision_safe_fraction = safe_fraction;
r_result->collision_unsafe_fraction = unsafe_fraction;
#if debug_test_motion
Vector3 sup_line2;
B_TO_G(motion, sup_line2);
normalLine->clear();
normalLine->begin(Mesh::PRIMITIVE_LINES, NULL);
normalLine->add_vertex(r_result->collision_point);
normalLine->add_vertex(r_result->collision_point + r_result->collision_normal * 10);
normalLine->end();
#endif
} else {
r_result->remainder = Vector3();
}
}
}
return has_penetration;
}
int SpaceBullet::test_ray_separation(RigidBodyBullet *p_body, const Transform &p_transform, bool p_infinite_inertia, Vector3 &r_recover_motion, PhysicsServer::SeparationResult *r_results, int p_result_max, float p_margin) {
btTransform body_transform;
G_TO_B(p_transform, body_transform);
UNSCALE_BT_BASIS(body_transform);
if (!p_body->get_kinematic_utilities()) {
p_body->init_kinematic_utilities();
}
btVector3 recover_motion(0, 0, 0);
int rays_found = 0;
int rays_found_this_round = 0;<--- The scope of the variable 'rays_found_this_round' can be reduced. [+]The scope of the variable 'rays_found_this_round' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:<--- Variable 'rays_found_this_round' is assigned a value that is never used.
void f(int x)<--- Variable 'rays_found_this_round' is assigned a value that is never used.
{<--- Variable 'rays_found_this_round' is assigned a value that is never used.
int i = 0;<--- Variable 'rays_found_this_round' is assigned a value that is never used.
if (x) {<--- Variable 'rays_found_this_round' is assigned a value that is never used.
// it's safe to move 'int i = 0;' here<--- Variable 'rays_found_this_round' is assigned a value that is never used.
for (int n = 0; n < 10; ++n) {<--- Variable 'rays_found_this_round' is assigned a value that is never used.
// it is possible but not safe to move 'int i = 0;' here<--- Variable 'rays_found_this_round' is assigned a value that is never used.
do_something(&i);<--- Variable 'rays_found_this_round' is assigned a value that is never used.
}<--- Variable 'rays_found_this_round' is assigned a value that is never used.
}<--- Variable 'rays_found_this_round' is assigned a value that is never used.
}<--- Variable 'rays_found_this_round' is assigned a value that is never used.
When you see this message it is always safe to reduce the variable scope 1 level. <--- Variable 'rays_found_this_round' is assigned a value that is never used.
for (int t(RECOVERING_MOVEMENT_CYCLES); 0 < t; --t) {
PhysicsServer::SeparationResult *next_results = &r_results[rays_found];
rays_found_this_round = recover_from_penetration_ray(p_body, body_transform, RECOVERING_MOVEMENT_SCALE, p_infinite_inertia, p_result_max - rays_found, recover_motion, next_results);
rays_found += rays_found_this_round;
if (rays_found_this_round == 0) {
body_transform.getOrigin() += recover_motion;
break;
}
}
B_TO_G(recover_motion, r_recover_motion);
return rays_found;
}
struct RecoverPenetrationBroadPhaseCallback : public btBroadphaseAabbCallback {
private:
btDbvtVolume bounds;
const btCollisionObject *self_collision_object;
uint32_t collision_layer;
uint32_t collision_mask;
struct CompoundLeafCallback : btDbvt::ICollide {
private:
RecoverPenetrationBroadPhaseCallback *parent_callback;
btCollisionObject *collision_object;
public:
CompoundLeafCallback(RecoverPenetrationBroadPhaseCallback *p_parent_callback, btCollisionObject *p_collision_object) :
parent_callback(p_parent_callback),
collision_object(p_collision_object) {
}
void Process(const btDbvtNode *leaf) {
BroadphaseResult result;
result.collision_object = collision_object;
result.compound_child_index = leaf->dataAsInt;
parent_callback->results.push_back(result);
}
};
public:
struct BroadphaseResult {
btCollisionObject *collision_object;
int compound_child_index;
};
Vector<BroadphaseResult> results;
public:
RecoverPenetrationBroadPhaseCallback(const btCollisionObject *p_self_collision_object, uint32_t p_collision_layer, uint32_t p_collision_mask, btVector3 p_aabb_min, btVector3 p_aabb_max) :
self_collision_object(p_self_collision_object),
collision_layer(p_collision_layer),
collision_mask(p_collision_mask) {
bounds = btDbvtVolume::FromMM(p_aabb_min, p_aabb_max);<--- Variable 'bounds' is assigned in constructor body. Consider performing initialization in initialization list. [+]When an object of a class is created, the constructors of all member variables are called consecutively in the order the variables are declared, even if you don't explicitly write them to the initialization list. You could avoid assigning 'bounds' a value by passing the value to the constructor in the initialization list.
}
virtual ~RecoverPenetrationBroadPhaseCallback() {}
virtual bool process(const btBroadphaseProxy *proxy) {
btCollisionObject *co = static_cast<btCollisionObject *>(proxy->m_clientObject);
if (co->getInternalType() <= btCollisionObject::CO_RIGID_BODY) {
if (self_collision_object != proxy->m_clientObject && GodotFilterCallback::test_collision_filters(collision_layer, collision_mask, proxy->m_collisionFilterGroup, proxy->m_collisionFilterMask)) {
if (co->getCollisionShape()->isCompound()) {
const btCompoundShape *cs = static_cast<btCompoundShape *>(co->getCollisionShape());
if (cs->getNumChildShapes() > 1) {
const btDbvt *tree = cs->getDynamicAabbTree();
ERR_FAIL_COND_V(tree == nullptr, true);
// Transform bounds into compound shape local space
const btTransform other_in_compound_space = co->getWorldTransform().inverse();
const btMatrix3x3 abs_b = other_in_compound_space.getBasis().absolute();
const btVector3 local_center = other_in_compound_space(bounds.Center());
const btVector3 local_extent = bounds.Extents().dot3(abs_b[0], abs_b[1], abs_b[2]);
const btVector3 local_aabb_min = local_center - local_extent;
const btVector3 local_aabb_max = local_center + local_extent;
const btDbvtVolume local_bounds = btDbvtVolume::FromMM(local_aabb_min, local_aabb_max);
// Test collision against compound child shapes using its AABB tree
CompoundLeafCallback compound_leaf_callback(this, co);
tree->collideTV(tree->m_root, local_bounds, compound_leaf_callback);
} else {
// If there's only a single child shape then there's no need to search any more, we know which child overlaps
BroadphaseResult result;
result.collision_object = co;
result.compound_child_index = 0;
results.push_back(result);
}
} else {
BroadphaseResult result;
result.collision_object = co;
result.compound_child_index = -1;
results.push_back(result);
}
return true;
}
}
return false;
}
};
bool SpaceBullet::recover_from_penetration(RigidBodyBullet *p_body, const btTransform &p_body_position, btScalar p_recover_movement_scale, bool p_infinite_inertia, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result, const Set<RID> &p_exclude) {
// Calculate the cumulative AABB of all shapes of the kinematic body
btVector3 aabb_min, aabb_max;
bool shapes_found = false;
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
if (!kin_shape.is_active()) {
continue;
}
if (kin_shape.shape->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) {
// Skip rayshape in order to implement custom separation process
continue;
}
btTransform shape_transform = p_body_position * kin_shape.transform;
shape_transform.getOrigin() += r_delta_recover_movement;
btVector3 shape_aabb_min, shape_aabb_max;
kin_shape.shape->getAabb(shape_transform, shape_aabb_min, shape_aabb_max);
if (!shapes_found) {
aabb_min = shape_aabb_min;
aabb_max = shape_aabb_max;
shapes_found = true;
} else {
aabb_min.setX((aabb_min.x() < shape_aabb_min.x()) ? aabb_min.x() : shape_aabb_min.x());
aabb_min.setY((aabb_min.y() < shape_aabb_min.y()) ? aabb_min.y() : shape_aabb_min.y());
aabb_min.setZ((aabb_min.z() < shape_aabb_min.z()) ? aabb_min.z() : shape_aabb_min.z());
aabb_max.setX((aabb_max.x() > shape_aabb_max.x()) ? aabb_max.x() : shape_aabb_max.x());
aabb_max.setY((aabb_max.y() > shape_aabb_max.y()) ? aabb_max.y() : shape_aabb_max.y());
aabb_max.setZ((aabb_max.z() > shape_aabb_max.z()) ? aabb_max.z() : shape_aabb_max.z());
}
}
// If there are no shapes then there is no penetration either
if (!shapes_found) {
return false;
}
// Perform broadphase test
RecoverPenetrationBroadPhaseCallback recover_broad_result(p_body->get_bt_collision_object(), p_body->get_collision_layer(), p_body->get_collision_mask(), aabb_min, aabb_max);
dynamicsWorld->getBroadphase()->aabbTest(aabb_min, aabb_max, recover_broad_result);
bool penetration = false;
// Perform narrowphase per shape
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
if (!kin_shape.is_active()) {
continue;
}
if (kin_shape.shape->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) {
// Skip rayshape in order to implement custom separation process
continue;
}
if (kin_shape.shape->getShapeType() == EMPTY_SHAPE_PROXYTYPE) {
continue;
}
btTransform shape_transform = p_body_position * kin_shape.transform;
shape_transform.getOrigin() += r_delta_recover_movement;
for (int i = recover_broad_result.results.size() - 1; 0 <= i; --i) {
btCollisionObject *otherObject = recover_broad_result.results[i].collision_object;
CollisionObjectBullet *gObj = static_cast<CollisionObjectBullet *>(otherObject->getUserPointer());
if (p_exclude.has(gObj->get_self())) {
continue;
}
if (p_infinite_inertia && !otherObject->isStaticOrKinematicObject()) {
otherObject->activate(); // Force activation of hitten rigid, soft body
continue;
} else if (!p_body->get_bt_collision_object()->checkCollideWith(otherObject) || !otherObject->checkCollideWith(p_body->get_bt_collision_object())) {
continue;
}
if (otherObject->getCollisionShape()->isCompound()) {
const btCompoundShape *cs = static_cast<const btCompoundShape *>(otherObject->getCollisionShape());
if (cs->getNumChildShapes() == 0) {
continue; // No shapes to depenetrate from.
}
int shape_idx = recover_broad_result.results[i].compound_child_index;
ERR_FAIL_COND_V(shape_idx < 0 || shape_idx >= cs->getNumChildShapes(), false);
if (cs->getChildShape(shape_idx)->isConvex()) {
if (RFP_convex_convex_test(kin_shape.shape, static_cast<const btConvexShape *>(cs->getChildShape(shape_idx)), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
penetration = true;
}
} else {
if (RFP_convex_world_test(kin_shape.shape, cs->getChildShape(shape_idx), p_body->get_bt_collision_object(), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
penetration = true;
}
}
} else if (otherObject->getCollisionShape()->isConvex()) { /// Execute GJK test against object shape
if (RFP_convex_convex_test(kin_shape.shape, static_cast<const btConvexShape *>(otherObject->getCollisionShape()), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
penetration = true;
}
} else {
if (RFP_convex_world_test(kin_shape.shape, otherObject->getCollisionShape(), p_body->get_bt_collision_object(), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
penetration = true;
}
}
}
}
return penetration;
}
bool SpaceBullet::RFP_convex_convex_test(const btConvexShape *p_shapeA, const btConvexShape *p_shapeB, btCollisionObject *p_objectB, int p_shapeId_A, int p_shapeId_B, const btTransform &p_transformA, const btTransform &p_transformB, btScalar p_recover_movement_scale, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) {
// Initialize GJK input
btGjkPairDetector::ClosestPointInput gjk_input;
gjk_input.m_transformA = p_transformA;
// Avoid repeat penetrations
gjk_input.m_transformA.getOrigin() += r_delta_recover_movement;
gjk_input.m_transformB = p_transformB;
// Perform GJK test
btPointCollector result;
btGjkPairDetector gjk_pair_detector(p_shapeA, p_shapeB, gjk_simplex_solver, gjk_epa_pen_solver);
gjk_pair_detector.getClosestPoints(gjk_input, result, nullptr);
if (0 > result.m_distance) {
// Has penetration
r_delta_recover_movement += result.m_normalOnBInWorld * (result.m_distance * -1 * p_recover_movement_scale);
if (r_recover_result) {
if (result.m_distance < r_recover_result->penetration_distance) {
r_recover_result->hasPenetration = true;
r_recover_result->local_shape_most_recovered = p_shapeId_A;
r_recover_result->other_collision_object = p_objectB;
r_recover_result->other_compound_shape_index = p_shapeId_B;
r_recover_result->penetration_distance = result.m_distance;
r_recover_result->pointWorld = result.m_pointInWorld;
r_recover_result->normal = result.m_normalOnBInWorld;
}
}
return true;
}
return false;
}
bool SpaceBullet::RFP_convex_world_test(const btConvexShape *p_shapeA, const btCollisionShape *p_shapeB, btCollisionObject *p_objectA, btCollisionObject *p_objectB, int p_shapeId_A, int p_shapeId_B, const btTransform &p_transformA, const btTransform &p_transformB, btScalar p_recover_movement_scale, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) {
/// Contact test
btTransform tA(p_transformA);
// Avoid repeat penetrations
tA.getOrigin() += r_delta_recover_movement;
btCollisionObjectWrapper obA(nullptr, p_shapeA, p_objectA, tA, -1, p_shapeId_A);
btCollisionObjectWrapper obB(nullptr, p_shapeB, p_objectB, p_transformB, -1, p_shapeId_B);
btCollisionAlgorithm *algorithm = dispatcher->findAlgorithm(&obA, &obB, nullptr, BT_CONTACT_POINT_ALGORITHMS);
if (algorithm) {
GodotDeepPenetrationContactResultCallback contactPointResult(&obA, &obB);
//discrete collision detection query
algorithm->processCollision(&obA, &obB, dynamicsWorld->getDispatchInfo(), &contactPointResult);
algorithm->~btCollisionAlgorithm();
dispatcher->freeCollisionAlgorithm(algorithm);
if (contactPointResult.hasHit()) {
r_delta_recover_movement += contactPointResult.m_pointNormalWorld * (contactPointResult.m_penetration_distance * -1 * p_recover_movement_scale);
if (r_recover_result) {
if (contactPointResult.m_penetration_distance < r_recover_result->penetration_distance) {
r_recover_result->hasPenetration = true;
r_recover_result->local_shape_most_recovered = p_shapeId_A;
r_recover_result->other_collision_object = p_objectB;
r_recover_result->other_compound_shape_index = p_shapeId_B;
r_recover_result->penetration_distance = contactPointResult.m_penetration_distance;
r_recover_result->pointWorld = contactPointResult.m_pointWorld;
r_recover_result->normal = contactPointResult.m_pointNormalWorld;
}
}
return true;
}
}
return false;
}
int SpaceBullet::add_separation_result(PhysicsServer::SeparationResult *r_result, const SpaceBullet::RecoverResult &p_recover_result, int p_shape_id, const btCollisionObject *p_other_object) const {
// optimize results (ignore non-colliding)
if (p_recover_result.penetration_distance < 0.0) {
const btRigidBody *btRigid = static_cast<const btRigidBody *>(p_other_object);
CollisionObjectBullet *collisionObject = static_cast<CollisionObjectBullet *>(p_other_object->getUserPointer());
r_result->collision_depth = p_recover_result.penetration_distance;
B_TO_G(p_recover_result.pointWorld, r_result->collision_point);
B_TO_G(p_recover_result.normal, r_result->collision_normal);
B_TO_G(btRigid->getVelocityInLocalPoint(p_recover_result.pointWorld - btRigid->getWorldTransform().getOrigin()), r_result->collider_velocity);
r_result->collision_local_shape = p_shape_id;
r_result->collider_id = collisionObject->get_instance_id();
r_result->collider = collisionObject->get_self();
r_result->collider_shape = p_recover_result.other_compound_shape_index;
return 1;
} else {
return 0;
}
}
int SpaceBullet::recover_from_penetration_ray(RigidBodyBullet *p_body, const btTransform &p_body_position, btScalar p_recover_movement_scale, bool p_infinite_inertia, int p_result_max, btVector3 &r_delta_recover_movement, PhysicsServer::SeparationResult *r_results) {
// Calculate the cumulative AABB of all shapes of the kinematic body
btVector3 aabb_min, aabb_max;
bool shapes_found = false;
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
if (!kin_shape.is_active()) {
continue;
}
if (kin_shape.shape->getShapeType() != CUSTOM_CONVEX_SHAPE_TYPE) {
continue;
}
btTransform shape_transform = p_body_position * kin_shape.transform;
shape_transform.getOrigin() += r_delta_recover_movement;
btVector3 shape_aabb_min, shape_aabb_max;
kin_shape.shape->getAabb(shape_transform, shape_aabb_min, shape_aabb_max);
if (!shapes_found) {
aabb_min = shape_aabb_min;
aabb_max = shape_aabb_max;
shapes_found = true;
} else {
aabb_min.setX((aabb_min.x() < shape_aabb_min.x()) ? aabb_min.x() : shape_aabb_min.x());
aabb_min.setY((aabb_min.y() < shape_aabb_min.y()) ? aabb_min.y() : shape_aabb_min.y());
aabb_min.setZ((aabb_min.z() < shape_aabb_min.z()) ? aabb_min.z() : shape_aabb_min.z());
aabb_max.setX((aabb_max.x() > shape_aabb_max.x()) ? aabb_max.x() : shape_aabb_max.x());
aabb_max.setY((aabb_max.y() > shape_aabb_max.y()) ? aabb_max.y() : shape_aabb_max.y());
aabb_max.setZ((aabb_max.z() > shape_aabb_max.z()) ? aabb_max.z() : shape_aabb_max.z());
}
}
// If there are no shapes then there is no penetration either
if (!shapes_found) {
return 0;
}
// Perform broadphase test
RecoverPenetrationBroadPhaseCallback recover_broad_result(p_body->get_bt_collision_object(), p_body->get_collision_layer(), p_body->get_collision_mask(), aabb_min, aabb_max);
dynamicsWorld->getBroadphase()->aabbTest(aabb_min, aabb_max, recover_broad_result);
int ray_count = 0;
// Perform narrowphase per shape
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
if (ray_count >= p_result_max) {
break;
}
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
if (!kin_shape.is_active()) {
continue;
}
if (kin_shape.shape->getShapeType() != CUSTOM_CONVEX_SHAPE_TYPE) {
continue;
}
btTransform shape_transform = p_body_position * kin_shape.transform;
shape_transform.getOrigin() += r_delta_recover_movement;
for (int i = recover_broad_result.results.size() - 1; 0 <= i; --i) {
btCollisionObject *otherObject = recover_broad_result.results[i].collision_object;
if (p_infinite_inertia && !otherObject->isStaticOrKinematicObject()) {
otherObject->activate(); // Force activation of hitten rigid, soft body
continue;
} else if (!p_body->get_bt_collision_object()->checkCollideWith(otherObject) || !otherObject->checkCollideWith(p_body->get_bt_collision_object())) {
continue;
}
if (otherObject->getCollisionShape()->isCompound()) {
const btCompoundShape *cs = static_cast<const btCompoundShape *>(otherObject->getCollisionShape());
int shape_idx = recover_broad_result.results[i].compound_child_index;
ERR_FAIL_COND_V(shape_idx < 0 || shape_idx >= cs->getNumChildShapes(), false);
RecoverResult recover_result;
if (RFP_convex_world_test(kin_shape.shape, cs->getChildShape(shape_idx), p_body->get_bt_collision_object(), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, &recover_result)) {
ray_count = add_separation_result(&r_results[ray_count], recover_result, kinIndex, otherObject);
}
} else {
RecoverResult recover_result;
if (RFP_convex_world_test(kin_shape.shape, otherObject->getCollisionShape(), p_body->get_bt_collision_object(), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, &recover_result)) {
ray_count = add_separation_result(&r_results[ray_count], recover_result, kinIndex, otherObject);
}
}
}
}
return ray_count;
}
|