1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354 | /**************************************************************************/
/* basis.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef BASIS_H
#define BASIS_H
#include "core/math/quat.h"
#include "core/math/vector3.h"
class _NO_DISCARD_CLASS_ Basis {
public:
Vector3 elements[3] = {
Vector3(1, 0, 0),
Vector3(0, 1, 0),
Vector3(0, 0, 1)
};
_FORCE_INLINE_ const Vector3 &operator[](int p_axis) const {
return elements[p_axis];
}
_FORCE_INLINE_ Vector3 &operator[](int p_axis) {
return elements[p_axis];
}
void invert();
void transpose();
Basis inverse() const;
Basis transposed() const;
_FORCE_INLINE_ real_t determinant() const;
void from_z(const Vector3 &p_z);
_FORCE_INLINE_ Vector3 get_axis(int p_axis) const {
// Get actual basis axis (elements is transposed for performance).
return Vector3(elements[0][p_axis], elements[1][p_axis], elements[2][p_axis]);
}
_FORCE_INLINE_ void set_axis(int p_axis, const Vector3 &p_value) {
// Get actual basis axis (elements is transposed for performance).
elements[0][p_axis] = p_value.x;
elements[1][p_axis] = p_value.y;
elements[2][p_axis] = p_value.z;
}
void rotate(const Vector3 &p_axis, real_t p_angle);
Basis rotated(const Vector3 &p_axis, real_t p_angle) const;
void rotate_local(const Vector3 &p_axis, real_t p_angle);
Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;
void rotate(const Vector3 &p_euler);
Basis rotated(const Vector3 &p_euler) const;
void rotate(const Quat &p_quat);
Basis rotated(const Quat &p_quat) const;
Vector3 get_rotation_euler() const;
void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
Quat get_rotation_quat() const;
Vector3 get_rotation() const { return get_rotation_euler(); }
Vector3 rotref_posscale_decomposition(Basis &r_rotref) const;
Vector3 get_euler_xyz() const;
void set_euler_xyz(const Vector3 &p_euler);
Vector3 get_euler_xzy() const;
void set_euler_xzy(const Vector3 &p_euler);
Vector3 get_euler_yzx() const;
void set_euler_yzx(const Vector3 &p_euler);
Vector3 get_euler_yxz() const;
void set_euler_yxz(const Vector3 &p_euler);
Vector3 get_euler_zxy() const;
void set_euler_zxy(const Vector3 &p_euler);
Vector3 get_euler_zyx() const;
void set_euler_zyx(const Vector3 &p_euler);
Quat get_quat() const;
void set_quat(const Quat &p_quat);
Vector3 get_euler() const { return get_euler_yxz(); }
void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
void scale(const Vector3 &p_scale);
Basis scaled(const Vector3 &p_scale) const;
void scale_local(const Vector3 &p_scale);
Basis scaled_local(const Vector3 &p_scale) const;
Vector3 get_scale() const;
Vector3 get_scale_abs() const;
Vector3 get_scale_local() const;
void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale);
void set_quat_scale(const Quat &p_quat, const Vector3 &p_scale);
// transposed dot products
_FORCE_INLINE_ real_t tdotx(const Vector3 &p_v) const {
return elements[0][0] * p_v[0] + elements[1][0] * p_v[1] + elements[2][0] * p_v[2];
}
_FORCE_INLINE_ real_t tdoty(const Vector3 &p_v) const {
return elements[0][1] * p_v[0] + elements[1][1] * p_v[1] + elements[2][1] * p_v[2];
}
_FORCE_INLINE_ real_t tdotz(const Vector3 &p_v) const {
return elements[0][2] * p_v[0] + elements[1][2] * p_v[1] + elements[2][2] * p_v[2];
}
bool is_equal_approx(const Basis &p_basis) const;
// For complicated reasons, the second argument is always discarded. See #45062.
bool is_equal_approx(const Basis &p_a, const Basis &p_b) const { return is_equal_approx(p_a); }
bool is_equal_approx_ratio(const Basis &p_a, const Basis &p_b, real_t p_epsilon = UNIT_EPSILON) const;
bool operator==(const Basis &p_matrix) const;
bool operator!=(const Basis &p_matrix) const;
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
_FORCE_INLINE_ void operator*=(const Basis &p_matrix);
_FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
_FORCE_INLINE_ void operator+=(const Basis &p_matrix);
_FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
_FORCE_INLINE_ void operator-=(const Basis &p_matrix);
_FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
_FORCE_INLINE_ void operator*=(real_t p_val);
_FORCE_INLINE_ Basis operator*(real_t p_val) const;
int get_orthogonal_index() const;
void set_orthogonal_index(int p_index);
void set_diagonal(const Vector3 &p_diag);
bool is_orthogonal() const;
bool is_diagonal() const;
bool is_rotation() const;
Basis slerp(const Basis &p_to, real_t p_weight) const;
_FORCE_INLINE_ Basis lerp(const Basis &p_to, real_t p_weight) const;
operator String() const;
/* create / set */
_FORCE_INLINE_ void set(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) {
elements[0][0] = p_xx;
elements[0][1] = p_xy;
elements[0][2] = p_xz;
elements[1][0] = p_yx;
elements[1][1] = p_yy;
elements[1][2] = p_yz;
elements[2][0] = p_zx;
elements[2][1] = p_zy;
elements[2][2] = p_zz;
}
_FORCE_INLINE_ void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
set_axis(0, p_x);
set_axis(1, p_y);
set_axis(2, p_z);
}
_FORCE_INLINE_ Vector3 get_column(int p_i) const {
return Vector3(elements[0][p_i], elements[1][p_i], elements[2][p_i]);
}
_FORCE_INLINE_ Vector3 get_row(int p_i) const {
return Vector3(elements[p_i][0], elements[p_i][1], elements[p_i][2]);
}
_FORCE_INLINE_ Vector3 get_main_diagonal() const {
return Vector3(elements[0][0], elements[1][1], elements[2][2]);
}
_FORCE_INLINE_ void set_row(int p_i, const Vector3 &p_row) {
elements[p_i][0] = p_row.x;
elements[p_i][1] = p_row.y;
elements[p_i][2] = p_row.z;
}
_FORCE_INLINE_ void set_zero() {
elements[0].zero();
elements[1].zero();
elements[2].zero();
}
_FORCE_INLINE_ Basis transpose_xform(const Basis &p_m) const {
return Basis(
elements[0].x * p_m[0].x + elements[1].x * p_m[1].x + elements[2].x * p_m[2].x,
elements[0].x * p_m[0].y + elements[1].x * p_m[1].y + elements[2].x * p_m[2].y,
elements[0].x * p_m[0].z + elements[1].x * p_m[1].z + elements[2].x * p_m[2].z,
elements[0].y * p_m[0].x + elements[1].y * p_m[1].x + elements[2].y * p_m[2].x,
elements[0].y * p_m[0].y + elements[1].y * p_m[1].y + elements[2].y * p_m[2].y,
elements[0].y * p_m[0].z + elements[1].y * p_m[1].z + elements[2].y * p_m[2].z,
elements[0].z * p_m[0].x + elements[1].z * p_m[1].x + elements[2].z * p_m[2].x,
elements[0].z * p_m[0].y + elements[1].z * p_m[1].y + elements[2].z * p_m[2].y,
elements[0].z * p_m[0].z + elements[1].z * p_m[1].z + elements[2].z * p_m[2].z);
}
Basis(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) {
set(p_xx, p_xy, p_xz, p_yx, p_yy, p_yz, p_zx, p_zy, p_zz);
}
void orthonormalize();
Basis orthonormalized() const;
bool is_symmetric() const;
Basis diagonalize();
// The following normal xform functions are correct for non-uniform scales.
// Use these two functions in combination to xform a series of normals.
// First use get_normal_xform_basis() to precalculate the inverse transpose.
// Then apply xform_normal_fast() multiple times using the inverse transpose basis.
Basis get_normal_xform_basis() const { return inverse().transposed(); }
// N.B. This only does a normal transform if the basis used is the inverse transpose!
// Otherwise use xform_normal().
Vector3 xform_normal_fast(const Vector3 &p_vector) const { return xform(p_vector).normalized(); }
// This function does the above but for a single normal vector. It is considerably slower, so should usually
// only be used in cases of single normals, or when the basis changes each time.
Vector3 xform_normal(const Vector3 &p_vector) const { return get_normal_xform_basis().xform_normal_fast(p_vector); }
operator Quat() const { return get_quat(); }
Basis(const Quat &p_quat) { set_quat(p_quat); }<--- Class 'Basis' has a constructor with 1 argument that is not explicit. [+]Class 'Basis' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Basis(const Quat &p_quat, const Vector3 &p_scale) { set_quat_scale(p_quat, p_scale); }
Basis(const Vector3 &p_euler) { set_euler(p_euler); }<--- Class 'Basis' has a constructor with 1 argument that is not explicit. [+]Class 'Basis' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); }
Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
_FORCE_INLINE_ Basis(const Vector3 &p_row0, const Vector3 &p_row1, const Vector3 &p_row2) {
elements[0] = p_row0;
elements[1] = p_row1;
elements[2] = p_row2;
}
_FORCE_INLINE_ Basis() {}
};
_FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
set(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
}
_FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
return Basis(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
}
_FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
elements[0] += p_matrix.elements[0];
elements[1] += p_matrix.elements[1];
elements[2] += p_matrix.elements[2];
}
_FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
Basis ret(*this);
ret += p_matrix;
return ret;
}
_FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
elements[0] -= p_matrix.elements[0];
elements[1] -= p_matrix.elements[1];
elements[2] -= p_matrix.elements[2];
}
_FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
Basis ret(*this);
ret -= p_matrix;
return ret;
}
_FORCE_INLINE_ void Basis::operator*=(real_t p_val) {
elements[0] *= p_val;
elements[1] *= p_val;
elements[2] *= p_val;
}
_FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const {
Basis ret(*this);
ret *= p_val;
return ret;
}
Vector3 Basis::xform(const Vector3 &p_vector) const {
return Vector3(
elements[0].dot(p_vector),
elements[1].dot(p_vector),
elements[2].dot(p_vector));
}
Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
return Vector3(
(elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z),
(elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z),
(elements[0][2] * p_vector.x) + (elements[1][2] * p_vector.y) + (elements[2][2] * p_vector.z));
}
real_t Basis::determinant() const {
return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) -
elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) +
elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]);
}
Basis Basis::lerp(const Basis &p_to, real_t p_weight) const {
Basis b;
b.elements[0] = elements[0].linear_interpolate(p_to.elements[0], p_weight);
b.elements[1] = elements[1].linear_interpolate(p_to.elements[1], p_weight);
b.elements[2] = elements[2].linear_interpolate(p_to.elements[2], p_weight);
return b;
}
#endif // BASIS_H
|