1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
/**************************************************************************/
/*  geometry.h                                                            */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#ifndef GEOMETRY_H
#define GEOMETRY_H

#include "core/math/delaunay.h"
#include "core/math/face3.h"
#include "core/math/rect2.h"
#include "core/math/triangulate.h"
#include "core/math/vector3.h"
#include "core/object.h"
#include "core/pool_vector.h"
#include "core/print_string.h"
#include "core/vector.h"

class Geometry {
public:
	static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) {
		Vector2 d1 = q1 - p1; // Direction vector of segment S1.
		Vector2 d2 = q2 - p2; // Direction vector of segment S2.
		Vector2 r = p1 - p2;
		real_t a = d1.dot(d1); // Squared length of segment S1, always nonnegative.
		real_t e = d2.dot(d2); // Squared length of segment S2, always nonnegative.
		real_t f = d2.dot(r);
		real_t s, t;
		// Check if either or both segments degenerate into points.
		if (a <= (real_t)CMP_EPSILON && e <= (real_t)CMP_EPSILON) {
			// Both segments degenerate into points.
			c1 = p1;
			c2 = p2;
			return Math::sqrt((c1 - c2).dot(c1 - c2));
		}
		if (a <= (real_t)CMP_EPSILON) {
			// First segment degenerates into a point.
			s = 0;
			t = f / e; // s = 0 => t = (b*s + f) / e = f / e
			t = CLAMP(t, 0, 1);
		} else {
			real_t c = d1.dot(r);
			if (e <= (real_t)CMP_EPSILON) {
				// Second segment degenerates into a point.
				t = 0;
				s = CLAMP(-c / a, 0, 1); // t = 0 => s = (b*t - c) / a = -c / a
			} else {
				// The general nondegenerate case starts here.
				real_t b = d1.dot(d2);
				real_t denom = a * e - b * b; // Always nonnegative.
				// If segments not parallel, compute closest point on L1 to L2 and
				// clamp to segment S1. Else pick arbitrary s (here 0).
				if (denom != 0) {
					s = CLAMP((b * f - c * e) / denom, 0, 1);
				} else {
					s = 0;
				}
				// Compute point on L2 closest to S1(s) using
				// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
				t = (b * s + f) / e;

				//If t in [0,1] done. Else clamp t, recompute s for the new value
				// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
				// and clamp s to [0, 1].
				if (t < 0) {
					t = 0;
					s = CLAMP(-c / a, 0, 1);
				} else if (t > 1) {
					t = 1;
					s = CLAMP((b - c) / a, 0, 1);
				}
			}
		}
		c1 = p1 + d1 * s;
		c2 = p2 + d2 * t;
		return Math::sqrt((c1 - c2).dot(c1 - c2));
	}

	static void get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt);
	static real_t get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1);

	static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) {
		Vector3 e1 = p_v1 - p_v0;
		Vector3 e2 = p_v2 - p_v0;
		Vector3 h = p_dir.cross(e2);
		real_t a = e1.dot(h);
		if (Math::is_zero_approx(a)) { // Parallel test.
			return false;
		}

		real_t f = 1 / a;

		Vector3 s = p_from - p_v0;
		real_t u = f * s.dot(h);

		if ((u < 0) || (u > 1)) {
			return false;
		}

		Vector3 q = s.cross(e1);

		real_t v = f * p_dir.dot(q);

		if ((v < 0) || (u + v > 1)) {
			return false;
		}

		// At this stage we can compute t to find out where
		// the intersection point is on the line.
		real_t t = f * e2.dot(q);

		if (t > 0.00001f) { // ray intersection
			if (r_res) {
				*r_res = p_from + p_dir * t;
			}
			return true;
		} else { // This means that there is a line intersection but not a ray intersection.
			return false;
		}
	}

	static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) {
		Vector3 rel = p_to - p_from;
		Vector3 e1 = p_v1 - p_v0;
		Vector3 e2 = p_v2 - p_v0;
		Vector3 h = rel.cross(e2);
		real_t a = e1.dot(h);
		if (Math::is_zero_approx(a)) { // Parallel test.
			return false;
		}

		real_t f = 1 / a;

		Vector3 s = p_from - p_v0;
		real_t u = f * s.dot(h);

		if ((u < 0) || (u > 1)) {
			return false;
		}

		Vector3 q = s.cross(e1);

		real_t v = f * rel.dot(q);

		if ((v < 0) || (u + v > 1)) {
			return false;
		}

		// At this stage we can compute t to find out where
		// the intersection point is on the line.
		real_t t = f * e2.dot(q);

		if (t > (real_t)CMP_EPSILON && t <= 1) { // Ray intersection.
			if (r_res) {
				*r_res = p_from + rel * t;
			}
			return true;
		} else { // This means that there is a line intersection but not a ray intersection.
			return false;
		}
	}

	static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) {
		Vector3 sphere_pos = p_sphere_pos - p_from;
		Vector3 rel = (p_to - p_from);
		real_t rel_l = rel.length();
		if (rel_l < (real_t)CMP_EPSILON) {
			return false; // Both points are the same.
		}
		Vector3 normal = rel / rel_l;

		real_t sphere_d = normal.dot(sphere_pos);

		real_t ray_distance = sphere_pos.distance_to(normal * sphere_d);

		if (ray_distance >= p_sphere_radius) {
			return false;
		}

		real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance;
		real_t inters_d = sphere_d;

		if (inters_d2 >= (real_t)CMP_EPSILON) {
			inters_d -= Math::sqrt(inters_d2);
		}

		// Check in segment.
		if (inters_d < 0 || inters_d > rel_l) {
			return false;
		}

		Vector3 result = p_from + normal * inters_d;

		if (r_res) {
			*r_res = result;
		}
		if (r_norm) {
			*r_norm = (result - p_sphere_pos).normalized();
		}

		return true;
	}

	static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr, int p_cylinder_axis = 2) {
		Vector3 rel = (p_to - p_from);
		real_t rel_l = rel.length();
		if (rel_l < (real_t)CMP_EPSILON) {
			return false; // Both points are the same.
		}

		ERR_FAIL_COND_V(p_cylinder_axis < 0, false);
		ERR_FAIL_COND_V(p_cylinder_axis > 2, false);
		Vector3 cylinder_axis;
		cylinder_axis[p_cylinder_axis] = 1;

		// First check if they are parallel.
		Vector3 normal = (rel / rel_l);
		Vector3 crs = normal.cross(cylinder_axis);
		real_t crs_l = crs.length();

		Vector3 axis_dir;

		if (crs_l < (real_t)CMP_EPSILON) {
			Vector3 side_axis;
			side_axis[(p_cylinder_axis + 1) % 3] = 1; // Any side axis OK.
			axis_dir = side_axis;
		} else {
			axis_dir = crs / crs_l;
		}

		real_t dist = axis_dir.dot(p_from);

		if (dist >= p_radius) {
			return false; // Too far away.
		}

		// Convert to 2D.
		real_t w2 = p_radius * p_radius - dist * dist;
		if (w2 < (real_t)CMP_EPSILON) {
			return false; // Avoid numerical error.
		}
		Size2 size(Math::sqrt(w2), p_height * 0.5f);

		Vector3 side_dir = axis_dir.cross(cylinder_axis).normalized();

		Vector2 from2D(side_dir.dot(p_from), p_from[p_cylinder_axis]);
		Vector2 to2D(side_dir.dot(p_to), p_to[p_cylinder_axis]);

		real_t min = 0, max = 1;

		int axis = -1;

		for (int i = 0; i < 2; i++) {
			real_t seg_from = from2D[i];
			real_t seg_to = to2D[i];
			real_t box_begin = -size[i];
			real_t box_end = size[i];
			real_t cmin, cmax;

			if (seg_from < seg_to) {
				if (seg_from > box_end || seg_to < box_begin) {
					return false;
				}
				real_t length = seg_to - seg_from;
				cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
				cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;

			} else {
				if (seg_to > box_end || seg_from < box_begin) {
					return false;
				}
				real_t length = seg_to - seg_from;
				cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
				cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
			}

			if (cmin > min) {
				min = cmin;
				axis = i;
			}
			if (cmax < max) {
				max = cmax;
			}
			if (max < min) {
				return false;
			}
		}

		// Convert to 3D again.
		Vector3 result = p_from + (rel * min);
		Vector3 res_normal = result;

		if (axis == 0) {
			res_normal[p_cylinder_axis] = 0;
		} else {
			int axis_side = (p_cylinder_axis + 1) % 3;
			res_normal[axis_side] = 0;
			axis_side = (axis_side + 1) % 3;
			res_normal[axis_side] = 0;
		}

		res_normal.normalize();

		if (r_res) {
			*r_res = result;
		}
		if (r_norm) {
			*r_norm = res_normal;
		}

		return true;
	}

	static bool segment_intersects_convex(const Vector3 &p_from, const Vector3 &p_to, const Plane *p_planes, int p_plane_count, Vector3 *p_res, Vector3 *p_norm) {
		real_t min = -1e20, max = 1e20;

		Vector3 rel = p_to - p_from;
		real_t rel_l = rel.length();

		if (rel_l < (real_t)CMP_EPSILON) {
			return false;
		}

		Vector3 dir = rel / rel_l;

		int min_index = -1;

		for (int i = 0; i < p_plane_count; i++) {
			const Plane &p = p_planes[i];

			real_t den = p.normal.dot(dir);

			if (Math::abs(den) <= (real_t)CMP_EPSILON) {
				continue; // Ignore parallel plane.
			}

			real_t dist = -p.distance_to(p_from) / den;

			if (den > 0) {
				// Backwards facing plane.
				if (dist < max) {
					max = dist;
				}
			} else {
				// Front facing plane.
				if (dist > min) {
					min = dist;
					min_index = i;
				}
			}
		}

		if (max <= min || min < 0 || min > rel_l || min_index == -1) { // Exit conditions.
			return false; // No intersection.
		}

		if (p_res) {
			*p_res = p_from + dir * min;
		}
		if (p_norm) {
			*p_norm = p_planes[min_index].normal;
		}

		return true;
	}

	static Vector3 get_closest_point_to_segment(const Vector3 &p_point, const Vector3 *p_segment) {
		Vector3 p = p_point - p_segment[0];
		Vector3 n = p_segment[1] - p_segment[0];
		real_t l2 = n.length_squared();
		if (l2 < 1e-20f) {
			return p_segment[0]; // Both points are the same, just give any.
		}

		real_t d = n.dot(p) / l2;

		if (d <= 0) {
			return p_segment[0]; // Before first point.
		} else if (d >= 1.0) {
			return p_segment[1]; // After first point.
		} else {
			return p_segment[0] + n * d; // Inside.
		}
	}

	static Vector3 get_closest_point_to_segment_uncapped(const Vector3 &p_point, const Vector3 *p_segment) {
		Vector3 p = p_point - p_segment[0];
		Vector3 n = p_segment[1] - p_segment[0];
		real_t l2 = n.length_squared();
		if (l2 < 1e-20f) {
			return p_segment[0]; // Both points are the same, just give any.
		}

		real_t d = n.dot(p) / l2;

		return p_segment[0] + n * d; // Inside.
	}

	static Vector2 get_closest_point_to_segment_2d(const Vector2 &p_point, const Vector2 *p_segment) {
		Vector2 p = p_point - p_segment[0];
		Vector2 n = p_segment[1] - p_segment[0];
		real_t l2 = n.length_squared();
		if (l2 < 1e-20f) {
			return p_segment[0]; // Both points are the same, just give any.
		}

		real_t d = n.dot(p) / l2;

		if (d <= 0) {<--- Assuming that condition 'd<=0' is not redundant
			return p_segment[0]; // Before first point.
		} else if (d >= 1) {<--- Condition 'd>=1' is always true
			return p_segment[1]; // After first point.
		} else {
			return p_segment[0] + n * d; // Inside.
		}
	}

	static bool is_point_in_triangle(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) {
		Vector2 an = a - s;
		Vector2 bn = b - s;
		Vector2 cn = c - s;

		bool orientation = an.cross(bn) > 0;

		if ((bn.cross(cn) > 0) != orientation) {
			return false;
		}

		return (cn.cross(an) > 0) == orientation;
	}

	static Vector3 barycentric_coordinates_2d(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) {
		// http://www.blackpawn.com/texts/pointinpoly/
		Vector2 v0 = c - a;
		Vector2 v1 = b - a;
		Vector2 v2 = s - a;

		// Compute dot products
		double dot00 = v0.dot(v0);
		double dot01 = v0.dot(v1);
		double dot02 = v0.dot(v2);
		double dot11 = v1.dot(v1);
		double dot12 = v1.dot(v2);

		// Check for divide by zero
		double denom = dot00 * dot11 - dot01 * dot01;
		if (denom == 0.0) {
			return Vector3(0.0, 0.0, 0.0);
		}

		// Compute barycentric coordinates
		double invDenom = 1.0 / denom;
		double b2 = (dot11 * dot02 - dot01 * dot12) * invDenom;
		double b1 = (dot00 * dot12 - dot01 * dot02) * invDenom;
		double b0 = 1.0 - b2 - b1;
		return Vector3(b0, b1, b2);
	}

	static Vector2 get_closest_point_to_segment_uncapped_2d(const Vector2 &p_point, const Vector2 *p_segment) {
		Vector2 p = p_point - p_segment[0];
		Vector2 n = p_segment[1] - p_segment[0];
		real_t l2 = n.length_squared();
		if (l2 < 1e-20f) {
			return p_segment[0]; // Both points are the same, just give any.
		}

		real_t d = n.dot(p) / l2;

		return p_segment[0] + n * d; // Inside.
	}

	static bool line_intersects_line_2d(const Vector2 &p_from_a, const Vector2 &p_dir_a, const Vector2 &p_from_b, const Vector2 &p_dir_b, Vector2 &r_result) {
		// See http://paulbourke.net/geometry/pointlineplane/

		const real_t denom = p_dir_b.y * p_dir_a.x - p_dir_b.x * p_dir_a.y;
		if (Math::is_zero_approx(denom)) { // Parallel?
			return false;
		}

		const Vector2 v = p_from_a - p_from_b;
		const real_t t = (p_dir_b.x * v.y - p_dir_b.y * v.x) / denom;
		r_result = p_from_a + t * p_dir_a;
		return true;
	}

	static bool segment_intersects_segment_2d(const Vector2 &p_from_a, const Vector2 &p_to_a, const Vector2 &p_from_b, const Vector2 &p_to_b, Vector2 *r_result) {
		Vector2 B = p_to_a - p_from_a;
		Vector2 C = p_from_b - p_from_a;
		Vector2 D = p_to_b - p_from_a;

		real_t ABlen = B.dot(B);
		if (ABlen <= 0) {
			return false;
		}
		Vector2 Bn = B / ABlen;
		C = Vector2(C.x * Bn.x + C.y * Bn.y, C.y * Bn.x - C.x * Bn.y);
		D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y);

		if ((C.y < 0 && D.y < 0) || (C.y >= 0 && D.y >= 0)) {
			return false;
		}

		real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y);

		// Fail if segment C-D crosses line A-B outside of segment A-B.
		if ((ABpos < 0) || (ABpos > 1)) {
			return false;
		}

		// (4) Apply the discovered position to line A-B in the original coordinate system.
		if (r_result) {
			*r_result = p_from_a + B * ABpos;
		}

		return true;
	}

	static inline bool point_in_projected_triangle(const Vector3 &p_point, const Vector3 &p_v1, const Vector3 &p_v2, const Vector3 &p_v3) {
		Vector3 face_n = (p_v1 - p_v3).cross(p_v1 - p_v2);

		Vector3 n1 = (p_point - p_v3).cross(p_point - p_v2);

		if (face_n.dot(n1) < 0) {
			return false;
		}

		Vector3 n2 = (p_v1 - p_v3).cross(p_v1 - p_point);

		if (face_n.dot(n2) < 0) {
			return false;
		}

		Vector3 n3 = (p_v1 - p_point).cross(p_v1 - p_v2);

		if (face_n.dot(n3) < 0) {
			return false;
		}

		return true;
	}

	static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle, const Vector3 &p_normal, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 &r_triangle_contact, Vector3 &r_sphere_contact) {
		real_t d = p_normal.dot(p_sphere_pos) - p_normal.dot(p_triangle[0]);

		if (d > p_sphere_radius || d < -p_sphere_radius) { // Not touching the plane of the face, return.
			return false;
		}

		Vector3 contact = p_sphere_pos - (p_normal * d);

		/** 2nd) TEST INSIDE TRIANGLE **/

		if (Geometry::point_in_projected_triangle(contact, p_triangle[0], p_triangle[1], p_triangle[2])) {
			r_triangle_contact = contact;
			r_sphere_contact = p_sphere_pos - p_normal * p_sphere_radius;
			//printf("solved inside triangle\n");
			return true;
		}

		/** 3rd TEST INSIDE EDGE CYLINDERS **/

		const Vector3 verts[4] = { p_triangle[0], p_triangle[1], p_triangle[2], p_triangle[0] }; // for() friendly

		for (int i = 0; i < 3; i++) {
			// Check edge cylinder.

			Vector3 n1 = verts[i] - verts[i + 1];
			Vector3 n2 = p_sphere_pos - verts[i + 1];

			///@TODO Maybe discard by range here to make the algorithm quicker.

			// Check point within cylinder radius.
			Vector3 axis = n1.cross(n2).cross(n1);
			axis.normalize();

			real_t ad = axis.dot(n2);

			if (ABS(ad) > p_sphere_radius) {
				// No chance with this edge, too far away.
				continue;
			}

			// Check point within edge capsule cylinder.
			/** 4th TEST INSIDE EDGE POINTS **/

			real_t sphere_at = n1.dot(n2);

			if (sphere_at >= 0 && sphere_at < n1.dot(n1)) {
				r_triangle_contact = p_sphere_pos - axis * (axis.dot(n2));
				r_sphere_contact = p_sphere_pos - axis * p_sphere_radius;
				// Point inside here.
				return true;
			}

			real_t r2 = p_sphere_radius * p_sphere_radius;

			if (n2.length_squared() < r2) {
				Vector3 n = (p_sphere_pos - verts[i + 1]).normalized();

				r_triangle_contact = verts[i + 1];
				r_sphere_contact = p_sphere_pos - n * p_sphere_radius;
				return true;
			}

			if (n2.distance_squared_to(n1) < r2) {
				Vector3 n = (p_sphere_pos - verts[i]).normalized();

				r_triangle_contact = verts[i];
				r_sphere_contact = p_sphere_pos - n * p_sphere_radius;
				return true;
			}

			break; // It's pointless to continue at this point, so save some CPU cycles.
		}

		return false;
	}

	static inline bool is_point_in_circle(const Vector2 &p_point, const Vector2 &p_circle_pos, real_t p_circle_radius) {
		return p_point.distance_squared_to(p_circle_pos) <= p_circle_radius * p_circle_radius;
	}

	static real_t segment_intersects_circle(const Vector2 &p_from, const Vector2 &p_to, const Vector2 &p_circle_pos, real_t p_circle_radius) {
		Vector2 line_vec = p_to - p_from;
		Vector2 vec_to_line = p_from - p_circle_pos;

		// Create a quadratic formula of the form ax^2 + bx + c = 0
		real_t a, b, c;

		a = line_vec.dot(line_vec);
		b = 2 * vec_to_line.dot(line_vec);
		c = vec_to_line.dot(vec_to_line) - p_circle_radius * p_circle_radius;

		// Solve for t.
		real_t sqrtterm = b * b - 4 * a * c;

		// If the term we intend to square root is less than 0 then the answer won't be real,
		// so it definitely won't be t in the range 0 to 1.
		if (sqrtterm < 0) {
			return -1;
		}

		// If we can assume that the line segment starts outside the circle (e.g. for continuous time collision detection)
		// then the following can be skipped and we can just return the equivalent of res1.
		sqrtterm = Math::sqrt(sqrtterm);
		real_t res1 = (-b - sqrtterm) / (2 * a);
		real_t res2 = (-b + sqrtterm) / (2 * a);

		if (res1 >= 0 && res1 <= 1) {
			return res1;
		}
		if (res2 >= 0 && res2 <= 1) {
			return res2;
		}
		return -1;
	}

	static inline Vector<Vector3> clip_polygon(const Vector<Vector3> &polygon, const Plane &p_plane) {
		enum LocationCache {
			LOC_INSIDE = 1,
			LOC_BOUNDARY = 0,
			LOC_OUTSIDE = -1
		};

		if (polygon.size() == 0) {
			return polygon;
		}

		int *location_cache = (int *)alloca(sizeof(int) * polygon.size());
		int inside_count = 0;
		int outside_count = 0;

		for (int a = 0; a < polygon.size(); a++) {
			real_t dist = p_plane.distance_to(polygon[a]);
			if (dist < (real_t)-CMP_POINT_IN_PLANE_EPSILON) {
				location_cache[a] = LOC_INSIDE;
				inside_count++;
			} else {
				if (dist > (real_t)CMP_POINT_IN_PLANE_EPSILON) {
					location_cache[a] = LOC_OUTSIDE;
					outside_count++;
				} else {
					location_cache[a] = LOC_BOUNDARY;
				}
			}
		}

		if (outside_count == 0) {
			return polygon; // No changes.

		} else if (inside_count == 0) {
			return Vector<Vector3>(); // Empty.
		}

		long previous = polygon.size() - 1;
		Vector<Vector3> clipped;

		for (int index = 0; index < polygon.size(); index++) {
			int loc = location_cache[index];
			if (loc == LOC_OUTSIDE) {
				if (location_cache[previous] == LOC_INSIDE) {
					const Vector3 &v1 = polygon[previous];
					const Vector3 &v2 = polygon[index];

					Vector3 segment = v1 - v2;
					real_t den = p_plane.normal.dot(segment);
					real_t dist = p_plane.distance_to(v1) / den;
					dist = -dist;
					clipped.push_back(v1 + segment * dist);
				}
			} else {
				const Vector3 &v1 = polygon[index];
				if ((loc == LOC_INSIDE) && (location_cache[previous] == LOC_OUTSIDE)) {
					const Vector3 &v2 = polygon[previous];
					Vector3 segment = v1 - v2;
					real_t den = p_plane.normal.dot(segment);
					real_t dist = p_plane.distance_to(v1) / den;
					dist = -dist;
					clipped.push_back(v1 + segment * dist);
				}

				clipped.push_back(v1);
			}

			previous = index;
		}

		return clipped;
	}

	enum PolyBooleanOperation {
		OPERATION_UNION,
		OPERATION_DIFFERENCE,
		OPERATION_INTERSECTION,
		OPERATION_XOR
	};
	enum PolyJoinType {
		JOIN_SQUARE,
		JOIN_ROUND,
		JOIN_MITER
	};
	enum PolyEndType {
		END_POLYGON,
		END_JOINED,
		END_BUTT,
		END_SQUARE,
		END_ROUND
	};

	static Vector<Vector<Point2>> merge_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
		return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b);
	}

	static Vector<Vector<Point2>> clip_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
		return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b);
	}

	static Vector<Vector<Point2>> intersect_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
		return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b);
	}

	static Vector<Vector<Point2>> exclude_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
		return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b);
	}

	static Vector<Vector<Point2>> clip_polyline_with_polygon_2d(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
		return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true);
	}

	static Vector<Vector<Point2>> intersect_polyline_with_polygon_2d(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
		return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true);
	}

	static Vector<Vector<Point2>> offset_polygon_2d(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type) {
		return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON);
	}

	static Vector<Vector<Point2>> offset_polyline_2d(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
		ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector<Vector<Point2>>(), "Attempt to offset a polyline like a polygon (use offset_polygon_2d instead).");

		return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type);
	}

	static Vector<int> triangulate_delaunay_2d(const Vector<Vector2> &p_points) {
		Vector<Delaunay2D::Triangle> tr = Delaunay2D::triangulate(p_points);
		Vector<int> triangles;

		for (int i = 0; i < tr.size(); i++) {
			triangles.push_back(tr[i].points[0]);
			triangles.push_back(tr[i].points[1]);
			triangles.push_back(tr[i].points[2]);
		}
		return triangles;
	}

	static Vector<int> triangulate_polygon(const Vector<Vector2> &p_polygon) {
		Vector<int> triangles;
		if (!Triangulate::triangulate(p_polygon, triangles)) {
			return Vector<int>(); //fail
		}
		return triangles;
	}

	static bool is_polygon_clockwise(const Vector<Vector2> &p_polygon) {
		int c = p_polygon.size();
		if (c < 3) {
			return false;
		}
		const Vector2 *p = p_polygon.ptr();
		real_t sum = 0;
		for (int i = 0; i < c; i++) {
			const Vector2 &v1 = p[i];
			const Vector2 &v2 = p[(i + 1) % c];
			sum += (v2.x - v1.x) * (v2.y + v1.y);
		}

		return sum > 0.0f;
	}

	// Alternate implementation that should be faster.
	static bool is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
		int c = p_polygon.size();
		if (c < 3) {
			return false;
		}
		const Vector2 *p = p_polygon.ptr();
		Vector2 further_away(-1e20, -1e20);
		Vector2 further_away_opposite(1e20, 1e20);

		for (int i = 0; i < c; i++) {
			further_away.x = MAX(p[i].x, further_away.x);
			further_away.y = MAX(p[i].y, further_away.y);
			further_away_opposite.x = MIN(p[i].x, further_away_opposite.x);
			further_away_opposite.y = MIN(p[i].y, further_away_opposite.y);
		}

		// Make point outside that won't intersect with points in segment from p_point.
		further_away += (further_away - further_away_opposite) * Vector2(1.221313, 1.512312);

		int intersections = 0;
		for (int i = 0; i < c; i++) {
			const Vector2 &v1 = p[i];
			const Vector2 &v2 = p[(i + 1) % c];
			if (segment_intersects_segment_2d(v1, v2, p_point, further_away, nullptr)) {
				intersections++;
			}
		}

		return (intersections & 1);
	}

	static PoolVector<PoolVector<Face3>> separate_objects(PoolVector<Face3> p_array);

	// Create a "wrap" that encloses the given geometry.
	static PoolVector<Face3> wrap_geometry(PoolVector<Face3> p_array, real_t *p_error = nullptr);

	struct MeshData {
		struct Face {
			Plane plane;
			Vector<int> indices;
		};

		Vector<Face> faces;

		struct Edge {
			int a, b;
		};

		Vector<Edge> edges;

		Vector<Vector3> vertices;

		void optimize_vertices();
		void clear();
	};

	// Occluder Meshes contain convex faces which may contain 0 to many convex holes.
	// (holes are analogous to portals)
	struct OccluderMeshData {
		struct Hole {
			LocalVectori<uint32_t> indices;
		};
		struct Face {
			Plane plane;
			bool two_way = false;
			LocalVectori<uint32_t> indices;
			LocalVectori<Hole> holes;
		};
		LocalVectori<Face> faces;
		LocalVectori<Vector3> vertices;
		void clear();
	};

	_FORCE_INLINE_ static int get_uv84_normal_bit(const Vector3 &p_vector) {
		int lat = Math::fast_ftoi(Math::floor(Math::acos(p_vector.dot(Vector3(0, 1, 0))) * 4.0 / Math_PI + 0.5));

		if (lat == 0) {
			return 24;
		} else if (lat == 4) {
			return 25;
		}

		int lon = Math::fast_ftoi(Math::floor((Math_PI + Math::atan2(p_vector.x, p_vector.z)) * 8.0 / (Math_PI * 2.0) + 0.5)) % 8;

		return lon + (lat - 1) * 8;
	}

	_FORCE_INLINE_ static int get_uv84_normal_bit_neighbors(int p_idx) {
		if (p_idx == 24) {
			return 1 | 2 | 4 | 8;
		} else if (p_idx == 25) {
			return (1 << 23) | (1 << 22) | (1 << 21) | (1 << 20);
		} else {
			int ret = 0;
			if ((p_idx % 8) == 0) {
				ret |= (1 << (p_idx + 7));
			} else {
				ret |= (1 << (p_idx - 1));
			}
			if ((p_idx % 8) == 7) {
				ret |= (1 << (p_idx - 7));
			} else {
				ret |= (1 << (p_idx + 1));
			}

			int mask = ret | (1 << p_idx);
			if (p_idx < 8) {
				ret |= 24;
			} else {
				ret |= mask >> 8;
			}

			if (p_idx >= 16) {
				ret |= 25;
			} else {
				ret |= mask << 8;
			}

			return ret;
		}
	}

	static real_t vec2_cross(const Point2 &O, const Point2 &A, const Point2 &B) {
		return (real_t)(A.x - O.x) * (B.y - O.y) - (real_t)(A.y - O.y) * (B.x - O.x);
	}

	// Returns a list of points on the convex hull in counter-clockwise order.
	// Note: the last point in the returned list is the same as the first one.
	static Vector<Point2> convex_hull_2d(Vector<Point2> P) {
		int n = P.size(), k = 0;
		Vector<Point2> H;
		H.resize(2 * n);

		// Sort points lexicographically.
		P.sort();

		// Build lower hull.
		for (int i = 0; i < n; ++i) {
			while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
				k--;
			}
			H.write[k++] = P[i];
		}

		// Build upper hull.
		for (int i = n - 2, t = k + 1; i >= 0; i--) {
			while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
				k--;
			}
			H.write[k++] = P[i];
		}

		H.resize(k);
		return H;
	}
	static Vector<Vector<Vector2>> decompose_polygon_in_convex(Vector<Point2> polygon);

	static MeshData build_convex_mesh(const PoolVector<Plane> &p_planes);
	static PoolVector<Plane> build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis = Vector3::AXIS_Z);
	static PoolVector<Plane> build_box_planes(const Vector3 &p_extents);
	static PoolVector<Plane> build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis = Vector3::AXIS_Z);
	static PoolVector<Plane> build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis = Vector3::AXIS_Z);
	static void sort_polygon_winding(Vector<Vector2> &r_verts, bool p_clockwise = true);
	static real_t find_polygon_area(const Vector3 *p_verts, int p_num_verts);

	static void make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size);

	struct PackRectsResult {
		int x;
		int y;
		bool packed;
	};
	static Vector<PackRectsResult> partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size);

	static Vector<Vector3> compute_convex_mesh_points(const Plane *p_planes, int p_plane_count, real_t p_epsilon = CMP_EPSILON);
	static bool convex_hull_intersects_convex_hull(const Plane *p_planes_a, int p_plane_count_a, const Plane *p_planes_b, int p_plane_count_b);
	static real_t calculate_convex_hull_volume(const Geometry::MeshData &p_md);
	static bool verify_indices(const int *p_indices, int p_num_indices, int p_num_vertices);

private:
	static Vector<Vector<Point2>> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open = false);
	static Vector<Vector<Point2>> _polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type);
};

#endif // GEOMETRY_H