1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/**************************************************************************/
/*  dynamic_bvh.h                                                         */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#ifndef DYNAMIC_BVH_H
#define DYNAMIC_BVH_H

#include "core/math/aabb.h"
#include "core/templates/list.h"
#include "core/templates/local_vector.h"
#include "core/templates/paged_allocator.h"
#include "core/typedefs.h"

// Based on bullet Dbvh

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

///DynamicBVH implementation by Nathanael Presson
// The DynamicBVH class implements a fast dynamic bounding volume tree based on axis aligned bounding boxes (aabb tree).

class DynamicBVH {
	struct Node;

public:
	struct ID {
		Node *node = nullptr;

	public:
		_FORCE_INLINE_ bool is_valid() const { return node != nullptr; }
	};

private:
	struct Volume {
		Vector3 min, max;

		_FORCE_INLINE_ Vector3 get_center() const { return ((min + max) / 2); }
		_FORCE_INLINE_ Vector3 get_length() const { return (max - min); }

		_FORCE_INLINE_ bool contains(const Volume &a) const {
			return ((min.x <= a.min.x) &&
					(min.y <= a.min.y) &&
					(min.z <= a.min.z) &&
					(max.x >= a.max.x) &&
					(max.y >= a.max.y) &&
					(max.z >= a.max.z));
		}

		_FORCE_INLINE_ Volume merge(const Volume &b) const {
			Volume r;
			for (int i = 0; i < 3; ++i) {
				if (min[i] < b.min[i]) {
					r.min[i] = min[i];
				} else {
					r.min[i] = b.min[i];
				}
				if (max[i] > b.max[i]) {
					r.max[i] = max[i];
				} else {
					r.max[i] = b.max[i];
				}
			}
			return r;
		}

		_FORCE_INLINE_ real_t get_size() const {
			const Vector3 edges = get_length();
			return (edges.x * edges.y * edges.z +
					edges.x + edges.y + edges.z);
		}

		_FORCE_INLINE_ bool is_not_equal_to(const Volume &b) const {
			return ((min.x != b.min.x) ||
					(min.y != b.min.y) ||
					(min.z != b.min.z) ||
					(max.x != b.max.x) ||
					(max.y != b.max.y) ||
					(max.z != b.max.z));
		}

		_FORCE_INLINE_ real_t get_proximity_to(const Volume &b) const {
			const Vector3 d = (min + max) - (b.min + b.max);
			return (Math::abs(d.x) + Math::abs(d.y) + Math::abs(d.z));
		}

		_FORCE_INLINE_ int select_by_proximity(const Volume &a, const Volume &b) const {
			return (get_proximity_to(a) < get_proximity_to(b) ? 0 : 1);
		}

		//
		_FORCE_INLINE_ bool intersects(const Volume &b) const {
			return ((min.x <= b.max.x) &&
					(max.x >= b.min.x) &&
					(min.y <= b.max.y) &&
					(max.y >= b.min.y) &&
					(min.z <= b.max.z) &&
					(max.z >= b.min.z));
		}

		_FORCE_INLINE_ bool intersects_convex(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const {
			Vector3 half_extents = (max - min) * 0.5;
			Vector3 ofs = min + half_extents;

			for (int i = 0; i < p_plane_count; i++) {
				const Plane &p = p_planes[i];
				Vector3 point(
						(p.normal.x > 0) ? -half_extents.x : half_extents.x,
						(p.normal.y > 0) ? -half_extents.y : half_extents.y,
						(p.normal.z > 0) ? -half_extents.z : half_extents.z);
				point += ofs;
				if (p.is_point_over(point)) {
					return false;
				}
			}

			// Make sure all points in the shape aren't fully separated from the AABB on
			// each axis.
			int bad_point_counts_positive[3] = { 0 };
			int bad_point_counts_negative[3] = { 0 };

			for (int k = 0; k < 3; k++) {
				for (int i = 0; i < p_point_count; i++) {
					if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) {
						bad_point_counts_positive[k]++;
					}
					if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) {
						bad_point_counts_negative[k]++;
					}
				}

				if (bad_point_counts_negative[k] == p_point_count) {
					return false;
				}
				if (bad_point_counts_positive[k] == p_point_count) {
					return false;
				}
			}

			return true;
		}
	};

	struct Node {
		Volume volume;
		Node *parent = nullptr;
		union {
			Node *children[2];
			void *data;
		};

		_FORCE_INLINE_ bool is_leaf() const { return children[1] == nullptr; }
		_FORCE_INLINE_ bool is_internal() const { return (!is_leaf()); }

		_FORCE_INLINE_ int get_index_in_parent() const {
			ERR_FAIL_NULL_V(parent, 0);
			return (parent->children[1] == this) ? 1 : 0;
		}
		void get_max_depth(int depth, int &maxdepth) {
			if (is_internal()) {
				children[0]->get_max_depth(depth + 1, maxdepth);
				children[1]->get_max_depth(depth + 1, maxdepth);
			} else {
				maxdepth = MAX(maxdepth, depth);
			}
		}

		//
		int count_leaves() const {
			if (is_internal()) {
				return children[0]->count_leaves() + children[1]->count_leaves();
			} else {
				return (1);
			}
		}

		bool is_left_of_axis(const Vector3 &org, const Vector3 &axis) const {
			return axis.dot(volume.get_center() - org) <= 0;
		}

		Node() {
			children[0] = nullptr;
			children[1] = nullptr;
		}
	};

	PagedAllocator<Node> node_allocator;
	// Fields
	Node *bvh_root = nullptr;
	int lkhd = -1;
	int total_leaves = 0;
	uint32_t opath = 0;
	uint32_t index = 0;

	enum {
		ALLOCA_STACK_SIZE = 128
	};

	_FORCE_INLINE_ void _delete_node(Node *p_node);
	void _recurse_delete_node(Node *p_node);
	_FORCE_INLINE_ Node *_create_node(Node *p_parent, void *p_data);
	_FORCE_INLINE_ DynamicBVH::Node *_create_node_with_volume(Node *p_parent, const Volume &p_volume, void *p_data);
	_FORCE_INLINE_ void _insert_leaf(Node *p_root, Node *p_leaf);
	_FORCE_INLINE_ Node *_remove_leaf(Node *leaf);
	void _fetch_leaves(Node *p_root, LocalVector<Node *> &r_leaves, int p_depth = -1);
	static int _split(Node **leaves, int p_count, const Vector3 &p_org, const Vector3 &p_axis);
	static Volume _bounds(Node **leaves, int p_count);
	void _bottom_up(Node **leaves, int p_count);
	Node *_top_down(Node **leaves, int p_count, int p_bu_threshold);
	Node *_node_sort(Node *n, Node *&r);

	_FORCE_INLINE_ void _update(Node *leaf, int lookahead = -1);

	void _extract_leaves(Node *p_node, List<ID> *r_elements);

	_FORCE_INLINE_ bool _ray_aabb(const Vector3 &rayFrom, const Vector3 &rayInvDirection, const unsigned int raySign[3], const Vector3 bounds[2], real_t &tmin, real_t lambda_min, real_t lambda_max) {
		real_t tmax, tymin, tymax, tzmin, tzmax;
		tmin = (bounds[raySign[0]].x - rayFrom.x) * rayInvDirection.x;
		tmax = (bounds[1 - raySign[0]].x - rayFrom.x) * rayInvDirection.x;
		tymin = (bounds[raySign[1]].y - rayFrom.y) * rayInvDirection.y;
		tymax = (bounds[1 - raySign[1]].y - rayFrom.y) * rayInvDirection.y;

		if ((tmin > tymax) || (tymin > tmax)) {
			return false;
		}

		if (tymin > tmin) {
			tmin = tymin;
		}

		if (tymax < tmax) {
			tmax = tymax;
		}

		tzmin = (bounds[raySign[2]].z - rayFrom.z) * rayInvDirection.z;
		tzmax = (bounds[1 - raySign[2]].z - rayFrom.z) * rayInvDirection.z;

		if ((tmin > tzmax) || (tzmin > tmax)) {
			return false;
		}
		if (tzmin > tmin) {
			tmin = tzmin;
		}
		if (tzmax < tmax) {
			tmax = tzmax;
		}
		return ((tmin < lambda_max) && (tmax > lambda_min));
	}

public:
	// Methods
	void clear();
	bool is_empty() const { return (nullptr == bvh_root); }
	void optimize_bottom_up();
	void optimize_top_down(int bu_threshold = 128);
	void optimize_incremental(int passes);
	ID insert(const AABB &p_box, void *p_userdata);
	bool update(const ID &p_id, const AABB &p_box);
	void remove(const ID &p_id);
	void get_elements(List<ID> *r_elements);

	int get_leaf_count() const;
	int get_max_depth() const;

	/* Discouraged, but works as a reference on how it must be used */
	struct DefaultQueryResult {
		virtual bool operator()(void *p_data) = 0; //return true whether you want to continue the query
		virtual ~DefaultQueryResult() {}
	};

	template <typename QueryResult>
	_FORCE_INLINE_ void aabb_query(const AABB &p_aabb, QueryResult &r_result);
	template <typename QueryResult>
	_FORCE_INLINE_ void convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result);
	template <typename QueryResult>
	_FORCE_INLINE_ void ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result);

	void set_index(uint32_t p_index);
	uint32_t get_index() const;

	~DynamicBVH();
};

template <typename QueryResult>
void DynamicBVH::aabb_query(const AABB &p_box, QueryResult &r_result) {
	if (!bvh_root) {
		return;
	}

	Volume volume;
	volume.min = p_box.position;
	volume.max = p_box.position + p_box.size;

	const Node **alloca_stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
	const Node **stack = alloca_stack;
	stack[0] = bvh_root;
	int32_t depth = 1;
	int32_t threshold = ALLOCA_STACK_SIZE - 2;

	LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time.

	do {
		depth--;
		const Node *n = stack[depth];
		if (n->volume.intersects(volume)) {
			if (n->is_internal()) {
				if (depth > threshold) {
					if (aux_stack.is_empty()) {
						aux_stack.resize(ALLOCA_STACK_SIZE * 2);
						memcpy(aux_stack.ptr(), alloca_stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
						alloca_stack = nullptr;
					} else {
						aux_stack.resize(aux_stack.size() * 2);
					}
					stack = aux_stack.ptr();
					threshold = aux_stack.size() - 2;
				}
				stack[depth++] = n->children[0];
				stack[depth++] = n->children[1];
			} else {
				if (r_result(n->data)) {
					return;
				}
			}
		}
	} while (depth > 0);
}

template <typename QueryResult>
void DynamicBVH::convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result) {
	if (!bvh_root) {
		return;
	}

	//generate a volume anyway to improve pre-testing
	Volume volume;
	for (int i = 0; i < p_point_count; i++) {
		if (i == 0) {
			volume.min = p_points[0];
			volume.max = p_points[0];
		} else {
			volume.min = volume.min.min(p_points[i]);
			volume.max = volume.max.max(p_points[i]);
		}
	}

	const Node **alloca_stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
	const Node **stack = alloca_stack;
	stack[0] = bvh_root;
	int32_t depth = 1;
	int32_t threshold = ALLOCA_STACK_SIZE - 2;

	LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time.

	do {
		depth--;
		const Node *n = stack[depth];
		if (n->volume.intersects(volume) && n->volume.intersects_convex(p_planes, p_plane_count, p_points, p_point_count)) {
			if (n->is_internal()) {
				if (depth > threshold) {
					if (aux_stack.is_empty()) {
						aux_stack.resize(ALLOCA_STACK_SIZE * 2);
						memcpy(aux_stack.ptr(), alloca_stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
						alloca_stack = nullptr;
					} else {
						aux_stack.resize(aux_stack.size() * 2);
					}
					stack = aux_stack.ptr();
					threshold = aux_stack.size() - 2;
				}
				stack[depth++] = n->children[0];
				stack[depth++] = n->children[1];
			} else {
				if (r_result(n->data)) {
					return;
				}
			}
		}
	} while (depth > 0);
}
template <typename QueryResult>
void DynamicBVH::ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result) {
	if (!bvh_root) {
		return;
	}

	Vector3 ray_dir = (p_to - p_from);
	ray_dir.normalize();

	///what about division by zero? --> just set rayDirection[i] to INF/B3_LARGE_FLOAT
	Vector3 inv_dir;
	inv_dir[0] = ray_dir[0] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[0];
	inv_dir[1] = ray_dir[1] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[1];
	inv_dir[2] = ray_dir[2] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[2];
	unsigned int signs[3] = { inv_dir[0] < 0.0, inv_dir[1] < 0.0, inv_dir[2] < 0.0 };

	real_t lambda_max = ray_dir.dot(p_to - p_from);

	Vector3 bounds[2];

	const Node **alloca_stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
	const Node **stack = alloca_stack;
	stack[0] = bvh_root;
	int32_t depth = 1;
	int32_t threshold = ALLOCA_STACK_SIZE - 2;

	LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time.

	do {
		depth--;
		const Node *node = stack[depth];
		bounds[0] = node->volume.min;
		bounds[1] = node->volume.max;
		real_t tmin = 1.f, lambda_min = 0.f;
		unsigned int result1 = false;
		result1 = _ray_aabb(p_from, inv_dir, signs, bounds, tmin, lambda_min, lambda_max);
		if (result1) {
			if (node->is_internal()) {
				if (depth > threshold) {
					if (aux_stack.is_empty()) {
						aux_stack.resize(ALLOCA_STACK_SIZE * 2);
						memcpy(aux_stack.ptr(), alloca_stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
						alloca_stack = nullptr;
					} else {
						aux_stack.resize(aux_stack.size() * 2);
					}
					stack = aux_stack.ptr();
					threshold = aux_stack.size() - 2;
				}
				stack[depth++] = node->children[0];
				stack[depth++] = node->children[1];
			} else {
				if (r_result(node->data)) {
					return;
				}
			}
		}
	} while (depth > 0);
}

#endif // DYNAMIC_BVH_H