1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/**************************************************************************/
/*  nav_mesh_queries_3d.cpp                                               */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#ifndef _3D_DISABLED

#include "nav_mesh_queries_3d.h"

#include "../nav_base.h"
#include "../nav_map.h"
#include "nav_region_iteration_3d.h"

#include "core/math/geometry_3d.h"
#include "servers/navigation/navigation_utilities.h"

#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))

bool NavMeshQueries3D::emit_callback(const Callable &p_callback) {
	ERR_FAIL_COND_V(!p_callback.is_valid(), false);

	Callable::CallError ce;
	Variant result;
	p_callback.callp(nullptr, 0, result, ce);

	return ce.error == Callable::CallError::CALL_OK;
}

Vector3 NavMeshQueries3D::polygons_get_random_point(const LocalVector<gd::Polygon> &p_polygons, uint32_t p_navigation_layers, bool p_uniformly) {
	const LocalVector<gd::Polygon> &region_polygons = p_polygons;

	if (region_polygons.is_empty()) {
		return Vector3();
	}

	if (p_uniformly) {
		real_t accumulated_area = 0;
		RBMap<real_t, uint32_t> region_area_map;

		for (uint32_t rp_index = 0; rp_index < region_polygons.size(); rp_index++) {
			const gd::Polygon &region_polygon = region_polygons[rp_index];
			real_t polyon_area = region_polygon.surface_area;

			if (polyon_area == 0.0) {
				continue;
			}
			region_area_map[accumulated_area] = rp_index;
			accumulated_area += polyon_area;
		}
		if (region_area_map.is_empty() || accumulated_area == 0) {
			// All polygons have no real surface / no area.
			return Vector3();
		}

		real_t region_area_map_pos = Math::random(real_t(0), accumulated_area);

		RBMap<real_t, uint32_t>::Iterator region_E = region_area_map.find_closest(region_area_map_pos);
		ERR_FAIL_COND_V(!region_E, Vector3());
		uint32_t rrp_polygon_index = region_E->value;
		ERR_FAIL_UNSIGNED_INDEX_V(rrp_polygon_index, region_polygons.size(), Vector3());

		const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];

		real_t accumulated_polygon_area = 0;
		RBMap<real_t, uint32_t> polygon_area_map;

		for (uint32_t rpp_index = 2; rpp_index < rr_polygon.points.size(); rpp_index++) {
			real_t face_area = Face3(rr_polygon.points[0].pos, rr_polygon.points[rpp_index - 1].pos, rr_polygon.points[rpp_index].pos).get_area();

			if (face_area == 0.0) {
				continue;
			}
			polygon_area_map[accumulated_polygon_area] = rpp_index;
			accumulated_polygon_area += face_area;
		}
		if (polygon_area_map.is_empty() || accumulated_polygon_area == 0) {
			// All faces have no real surface / no area.
			return Vector3();
		}

		real_t polygon_area_map_pos = Math::random(real_t(0), accumulated_polygon_area);

		RBMap<real_t, uint32_t>::Iterator polygon_E = polygon_area_map.find_closest(polygon_area_map_pos);
		ERR_FAIL_COND_V(!polygon_E, Vector3());
		uint32_t rrp_face_index = polygon_E->value;
		ERR_FAIL_UNSIGNED_INDEX_V(rrp_face_index, rr_polygon.points.size(), Vector3());

		const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);

		Vector3 face_random_position = face.get_random_point_inside();
		return face_random_position;

	} else {
		uint32_t rrp_polygon_index = Math::random(int(0), region_polygons.size() - 1);

		const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];

		uint32_t rrp_face_index = Math::random(int(2), rr_polygon.points.size() - 1);

		const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);

		Vector3 face_random_position = face.get_random_point_inside();
		return face_random_position;
	}
}

void NavMeshQueries3D::_query_task_create_same_polygon_two_point_path(NavMeshPathQueryTask3D &p_query_task, const gd::Polygon *p_begin_polygon, const gd::Polygon *p_end_polygon) {
	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
		p_query_task.path_meta_point_types.resize(2);
		p_query_task.path_meta_point_types[0] = p_begin_polygon->owner->owner_type;
		p_query_task.path_meta_point_types[1] = p_end_polygon->owner->owner_type;
	}

	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
		p_query_task.path_meta_point_rids.resize(2);
		p_query_task.path_meta_point_rids[0] = p_begin_polygon->owner->owner_rid;
		p_query_task.path_meta_point_rids[1] = p_end_polygon->owner->owner_rid;
	}

	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
		p_query_task.path_meta_point_owners.resize(2);
		p_query_task.path_meta_point_owners[0] = p_begin_polygon->owner->owner_object_id;
		p_query_task.path_meta_point_owners[1] = p_end_polygon->owner->owner_object_id;
	}

	p_query_task.path_points.resize(2);
	p_query_task.path_points[0] = p_query_task.begin_position;
	p_query_task.path_points[1] = p_query_task.end_position;
}

void NavMeshQueries3D::_query_task_push_back_point_with_metadata(NavMeshPathQueryTask3D &p_query_task, const Vector3 &p_point, const gd::Polygon *p_point_polygon) {
	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
		p_query_task.path_meta_point_types.push_back(p_point_polygon->owner->owner_type);
	}

	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
		p_query_task.path_meta_point_rids.push_back(p_point_polygon->owner->owner_rid);
	}

	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
		p_query_task.path_meta_point_owners.push_back(p_point_polygon->owner->owner_object_id);
	}

	p_query_task.path_points.push_back(p_point);
}

void NavMeshQueries3D::map_query_path(NavMap *map, const Ref<NavigationPathQueryParameters3D> &p_query_parameters, Ref<NavigationPathQueryResult3D> p_query_result, const Callable &p_callback) {
	ERR_FAIL_NULL(map);
	ERR_FAIL_COND(p_query_parameters.is_null());
	ERR_FAIL_COND(p_query_result.is_null());

	using namespace NavigationUtilities;

	NavMeshQueries3D::NavMeshPathQueryTask3D query_task;
	query_task.start_position = p_query_parameters->get_start_position();
	query_task.target_position = p_query_parameters->get_target_position();
	query_task.navigation_layers = p_query_parameters->get_navigation_layers();
	query_task.callback = p_callback;

	switch (p_query_parameters->get_pathfinding_algorithm()) {
		case NavigationPathQueryParameters3D::PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR: {
			query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
		} break;
		default: {
			WARN_PRINT("No match for used PathfindingAlgorithm - fallback to default");
			query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
		} break;
	}

	switch (p_query_parameters->get_path_postprocessing()) {
		case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
			query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
		} break;
		case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
			query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED;
		} break;
		case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_NONE: {
			query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_NONE;
		} break;
		default: {
			WARN_PRINT("No match for used PathPostProcessing - fallback to default");
			query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
		} break;
	}

	query_task.metadata_flags = (int64_t)p_query_parameters->get_metadata_flags();
	query_task.simplify_path = p_query_parameters->get_simplify_path();
	query_task.simplify_epsilon = p_query_parameters->get_simplify_epsilon();
	query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_STARTED;

	map->query_path(query_task);

	const uint32_t path_point_size = query_task.path_points.size();

	Vector<Vector3> path_points;
	Vector<int32_t> path_meta_point_types;
	TypedArray<RID> path_meta_point_rids;
	Vector<int64_t> path_meta_point_owners;

	{
		path_points.resize(path_point_size);
		Vector3 *w = path_points.ptrw();
		const Vector3 *r = query_task.path_points.ptr();
		for (uint32_t i = 0; i < path_point_size; i++) {
			w[i] = r[i];
		}
	}

	if (query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
		path_meta_point_types.resize(path_point_size);
		int32_t *w = path_meta_point_types.ptrw();
		const int32_t *r = query_task.path_meta_point_types.ptr();
		for (uint32_t i = 0; i < path_point_size; i++) {
			w[i] = r[i];
		}
	}
	if (query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
		path_meta_point_rids.resize(path_point_size);
		for (uint32_t i = 0; i < path_point_size; i++) {
			path_meta_point_rids[i] = query_task.path_meta_point_rids[i];
		}
	}
	if (query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
		path_meta_point_owners.resize(path_point_size);
		int64_t *w = path_meta_point_owners.ptrw();
		const int64_t *r = query_task.path_meta_point_owners.ptr();
		for (uint32_t i = 0; i < path_point_size; i++) {
			w[i] = r[i];
		}
	}

	p_query_result->set_path(path_points);
	p_query_result->set_path_types(path_meta_point_types);
	p_query_result->set_path_rids(path_meta_point_rids);
	p_query_result->set_path_owner_ids(path_meta_point_owners);

	if (query_task.callback.is_valid()) {
		if (emit_callback(query_task.callback)) {
			query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_DISPATCHED;
		} else {
			query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_FAILED;
		}
	}
}

void NavMeshQueries3D::query_task_polygons_get_path(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::Polygon> &p_polygons) {
	p_query_task.path_points.clear();
	p_query_task.path_meta_point_types.clear();
	p_query_task.path_meta_point_rids.clear();
	p_query_task.path_meta_point_owners.clear();

	_query_task_find_start_end_positions(p_query_task, p_polygons);

	// Check for trivial cases
	if (!p_query_task.begin_polygon || !p_query_task.end_polygon) {
		p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FAILED;
		return;
	}

	if (p_query_task.begin_polygon == p_query_task.end_polygon) {
		_query_task_create_same_polygon_two_point_path(p_query_task, p_query_task.begin_polygon, p_query_task.end_polygon);
		return;
	}

	DEV_ASSERT(p_query_task.path_query_slot->path_corridor.size() == p_polygons.size() + p_query_task.link_polygons_size);
	_query_task_build_path_corridor(p_query_task, p_polygons);

	if (p_query_task.status == NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED || p_query_task.status == NavMeshPathQueryTask3D::TaskStatus::QUERY_FAILED) {
		return;
	}

	// Post-Process path.
	switch (p_query_task.path_postprocessing) {
		case PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
			_query_task_post_process_corridorfunnel(p_query_task);
		} break;
		case PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
			_query_task_post_process_edgecentered(p_query_task);
		} break;
		case PathPostProcessing::PATH_POSTPROCESSING_NONE: {
			_query_task_post_process_nopostprocessing(p_query_task);
		} break;
		default: {
			WARN_PRINT("No match for used PathPostProcessing - fallback to default");
			_query_task_post_process_corridorfunnel(p_query_task);
		} break;
	}

	p_query_task.path_points.invert();
	p_query_task.path_meta_point_types.invert();
	p_query_task.path_meta_point_rids.invert();
	p_query_task.path_meta_point_owners.invert();

	if (p_query_task.simplify_path) {
		_query_task_simplified_path_points(p_query_task);
	}

#ifdef DEBUG_ENABLED
	// Ensure post conditions as path meta arrays if used MUST match in array size with the path points.
	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
		DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_types.size());
	}

	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
		DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_rids.size());
	}

	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
		DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_owners.size());
	}
#endif // DEBUG_ENABLED

	p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
}

void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::Polygon> &p_polygons) {
	const gd::Polygon *begin_polygon = p_query_task.begin_polygon;
	const gd::Polygon *end_polygon = p_query_task.end_polygon;
	const Vector3 &begin_position = p_query_task.begin_position;
	Vector3 &end_position = p_query_task.end_position;
	// List of all reachable navigation polys.
	LocalVector<gd::NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
	for (gd::NavigationPoly &polygon : navigation_polys) {
		polygon.reset();
	}

	DEV_ASSERT(navigation_polys.size() == p_polygons.size() + p_query_task.link_polygons_size);

	// Initialize the matching navigation polygon.
	gd::NavigationPoly &begin_navigation_poly = navigation_polys[begin_polygon->id];
	begin_navigation_poly.poly = begin_polygon;
	begin_navigation_poly.entry = begin_position;
	begin_navigation_poly.back_navigation_edge_pathway_start = begin_position;
	begin_navigation_poly.back_navigation_edge_pathway_end = begin_position;

	// Heap of polygons to travel next.
	gd::Heap<gd::NavigationPoly *, gd::NavPolyTravelCostGreaterThan, gd::NavPolyHeapIndexer>
			&traversable_polys = p_query_task.path_query_slot->traversable_polys;
	traversable_polys.clear();
	traversable_polys.reserve(p_polygons.size() * 0.25);

	// This is an implementation of the A* algorithm.
	p_query_task.least_cost_id = begin_polygon->id;
	int prev_least_cost_id = -1;
	bool found_route = false;

	const gd::Polygon *reachable_end = nullptr;
	real_t distance_to_reachable_end = FLT_MAX;
	bool is_reachable = true;

	while (true) {
		// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
		for (const gd::Edge &edge : navigation_polys[p_query_task.least_cost_id].poly->edges) {
			// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
			for (uint32_t connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
				const gd::Edge::Connection &connection = edge.connections[connection_index];

				// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
				if ((p_query_task.navigation_layers & connection.polygon->owner->navigation_layers) == 0) {
					continue;
				}

				const gd::NavigationPoly &least_cost_poly = navigation_polys[p_query_task.least_cost_id];
				real_t poly_enter_cost = 0.0;
				real_t poly_travel_cost = least_cost_poly.poly->owner->travel_cost;

				if (prev_least_cost_id != -1 && navigation_polys[prev_least_cost_id].poly->owner->owner_rid != least_cost_poly.poly->owner->owner_rid) {
					poly_enter_cost = least_cost_poly.poly->owner->enter_cost;
				}
				prev_least_cost_id = p_query_task.least_cost_id;

				Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
				const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
				const real_t new_traveled_distance = least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance;

				// Check if the neighbor polygon has already been processed.
				gd::NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id];
				if (neighbor_poly.poly != nullptr) {
					// If the neighbor polygon hasn't been traversed yet and the new path leading to
					// it is shorter, update the polygon.
					if (neighbor_poly.traversable_poly_index < traversable_polys.size() &&
							new_traveled_distance < neighbor_poly.traveled_distance) {
						neighbor_poly.back_navigation_poly_id = p_query_task.least_cost_id;
						neighbor_poly.back_navigation_edge = connection.edge;
						neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
						neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
						neighbor_poly.traveled_distance = new_traveled_distance;
						neighbor_poly.distance_to_destination =
								new_entry.distance_to(end_position) *
								neighbor_poly.poly->owner->travel_cost;
						neighbor_poly.entry = new_entry;

						// Update the priority of the polygon in the heap.
						traversable_polys.shift(neighbor_poly.traversable_poly_index);
					}
				} else {
					// Initialize the matching navigation polygon.
					neighbor_poly.poly = connection.polygon;
					neighbor_poly.back_navigation_poly_id = p_query_task.least_cost_id;
					neighbor_poly.back_navigation_edge = connection.edge;
					neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
					neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
					neighbor_poly.traveled_distance = new_traveled_distance;
					neighbor_poly.distance_to_destination =
							new_entry.distance_to(end_position) *
							neighbor_poly.poly->owner->travel_cost;
					neighbor_poly.entry = new_entry;

					// Add the polygon to the heap of polygons to traverse next.
					traversable_polys.push(&neighbor_poly);
				}
			}
		}

		// When the heap of traversable polygons is empty at this point it means the end polygon is
		// unreachable.
		if (traversable_polys.is_empty()) {
			// Thus use the further reachable polygon
			ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
			is_reachable = false;
			if (reachable_end == nullptr) {
				// The path is not found and there is not a way out.
				break;
			}

			// Set as end point the furthest reachable point.
			end_polygon = reachable_end;
			real_t end_d = FLT_MAX;
			for (size_t point_id = 2; point_id < end_polygon->points.size(); point_id++) {
				Face3 f(end_polygon->points[0].pos, end_polygon->points[point_id - 1].pos, end_polygon->points[point_id].pos);
				Vector3 spoint = f.get_closest_point_to(p_query_task.target_position);
				real_t dpoint = spoint.distance_to(p_query_task.target_position);
				if (dpoint < end_d) {
					end_position = spoint;
					end_d = dpoint;
				}
			}

			// Search all faces of start polygon as well.
			bool closest_point_on_start_poly = false;
			for (size_t point_id = 2; point_id < begin_polygon->points.size(); point_id++) {
				Face3 f(begin_polygon->points[0].pos, begin_polygon->points[point_id - 1].pos, begin_polygon->points[point_id].pos);
				Vector3 spoint = f.get_closest_point_to(p_query_task.target_position);
				real_t dpoint = spoint.distance_to(p_query_task.target_position);
				if (dpoint < end_d) {
					end_position = spoint;
					end_d = dpoint;
					closest_point_on_start_poly = true;
				}
			}

			if (closest_point_on_start_poly) {
				_query_task_create_same_polygon_two_point_path(p_query_task, begin_polygon, end_polygon);
				p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
				return;
			}

			for (gd::NavigationPoly &nav_poly : navigation_polys) {
				nav_poly.poly = nullptr;
			}
			navigation_polys[begin_polygon->id].poly = begin_polygon;

			p_query_task.least_cost_id = begin_polygon->id;
			prev_least_cost_id = -1;

			reachable_end = nullptr;

			continue;
		}

		// Pop the polygon with the lowest travel cost from the heap of traversable polygons.
		p_query_task.least_cost_id = traversable_polys.pop()->poly->id;

		// Store the farthest reachable end polygon in case our goal is not reachable.
		if (is_reachable) {
			real_t distance = navigation_polys[p_query_task.least_cost_id].entry.distance_to(p_query_task.target_position);
			if (distance_to_reachable_end > distance) {
				distance_to_reachable_end = distance;
				reachable_end = navigation_polys[p_query_task.least_cost_id].poly;
			}
		}

		// Check if we reached the end
		if (navigation_polys[p_query_task.least_cost_id].poly == end_polygon) {
			found_route = true;
			break;
		}
	}

	// We did not find a route but we have both a start polygon and an end polygon at this point.
	// Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon.
	if (!found_route) {
		real_t end_d = FLT_MAX;
		// Search all faces of the start polygon for the closest point to our target position.
		for (size_t point_id = 2; point_id < begin_polygon->points.size(); point_id++) {
			Face3 f(begin_polygon->points[0].pos, begin_polygon->points[point_id - 1].pos, begin_polygon->points[point_id].pos);
			Vector3 spoint = f.get_closest_point_to(p_query_task.target_position);
			real_t dpoint = spoint.distance_to(p_query_task.target_position);
			if (dpoint < end_d) {
				end_position = spoint;
				end_d = dpoint;
			}
		}
		_query_task_create_same_polygon_two_point_path(p_query_task, begin_polygon, begin_polygon);
		p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
		return;
	}
}

void NavMeshQueries3D::_query_task_simplified_path_points(NavMeshPathQueryTask3D &p_query_task) {
	if (!p_query_task.simplify_path || p_query_task.path_points.size() <= 2) {
		return;
	}

	const LocalVector<uint32_t> &simplified_path_indices = NavMeshQueries3D::get_simplified_path_indices(p_query_task.path_points, p_query_task.simplify_epsilon);

	uint32_t index_count = simplified_path_indices.size();

	{
		Vector3 *points_ptr = p_query_task.path_points.ptr();
		for (uint32_t i = 0; i < index_count; i++) {
			points_ptr[i] = points_ptr[simplified_path_indices[i]];
		}
		p_query_task.path_points.resize(index_count);
	}

	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
		int32_t *types_ptr = p_query_task.path_meta_point_types.ptr();
		for (uint32_t i = 0; i < index_count; i++) {
			types_ptr[i] = types_ptr[simplified_path_indices[i]];
		}
		p_query_task.path_meta_point_types.resize(index_count);
	}

	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
		RID *rids_ptr = p_query_task.path_meta_point_rids.ptr();
		for (uint32_t i = 0; i < index_count; i++) {
			rids_ptr[i] = rids_ptr[simplified_path_indices[i]];
		}
		p_query_task.path_meta_point_rids.resize(index_count);
	}

	if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
		int64_t *owners_ptr = p_query_task.path_meta_point_owners.ptr();
		for (uint32_t i = 0; i < index_count; i++) {
			owners_ptr[i] = owners_ptr[simplified_path_indices[i]];
		}
		p_query_task.path_meta_point_owners.resize(index_count);
	}
}

void NavMeshQueries3D::_query_task_post_process_corridorfunnel(NavMeshPathQueryTask3D &p_query_task) {
	const Vector3 &begin_position = p_query_task.begin_position;
	const Vector3 &end_position = p_query_task.end_position;
	const Vector3 &map_up = p_query_task.map_up;
	LocalVector<gd::NavigationPoly> &p_path_corridor = p_query_task.path_query_slot->path_corridor;

	// Set the apex poly/point to the end point
	gd::NavigationPoly *apex_poly = &p_path_corridor[p_query_task.least_cost_id];

	Vector3 back_pathway[2] = { apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end };
	const Vector3 back_edge_closest_point = Geometry3D::get_closest_point_to_segment(end_position, back_pathway);
	if (end_position.is_equal_approx(back_edge_closest_point)) {
		// The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing.
		// At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon.
		if (apex_poly->back_navigation_poly_id != -1) {
			apex_poly = &p_path_corridor[apex_poly->back_navigation_poly_id];
		}
	}

	Vector3 apex_point = end_position;

	gd::NavigationPoly *left_poly = apex_poly;
	Vector3 left_portal = apex_point;
	gd::NavigationPoly *right_poly = apex_poly;
	Vector3 right_portal = apex_point;

	gd::NavigationPoly *p = apex_poly;

	_query_task_push_back_point_with_metadata(p_query_task, end_position, p_query_task.end_polygon);

	while (p) {
		// Set left and right points of the pathway between polygons.
		Vector3 left = p->back_navigation_edge_pathway_start;
		Vector3 right = p->back_navigation_edge_pathway_end;
		if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(map_up) < 0) {
			SWAP(left, right);
		}

		bool skip = false;
		if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(map_up) >= 0) {
			//process
			if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(map_up) > 0) {
				left_poly = p;
				left_portal = left;
			} else {
				_query_task_clip_path(p_query_task, apex_poly, right_portal, right_poly);

				apex_point = right_portal;
				p = right_poly;
				left_poly = p;
				apex_poly = p;
				left_portal = apex_point;
				right_portal = apex_point;

				_query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);

				skip = true;
			}
		}

		if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(map_up) <= 0) {
			//process
			if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(map_up) < 0) {
				right_poly = p;
				right_portal = right;
			} else {
				_query_task_clip_path(p_query_task, apex_poly, left_portal, left_poly);

				apex_point = left_portal;
				p = left_poly;
				right_poly = p;
				apex_poly = p;
				right_portal = apex_point;
				left_portal = apex_point;

				_query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);
			}
		}

		// Go to the previous polygon.
		if (p->back_navigation_poly_id != -1) {
			p = &p_path_corridor[p->back_navigation_poly_id];
		} else {
			// The end
			p = nullptr;
		}
	}

	// If the last point is not the begin point, add it to the list.
	if (p_query_task.path_points[p_query_task.path_points.size() - 1] != begin_position) {
		_query_task_push_back_point_with_metadata(p_query_task, begin_position, p_query_task.begin_polygon);
	}
}

void NavMeshQueries3D::_query_task_post_process_edgecentered(NavMeshPathQueryTask3D &p_query_task) {
	const Vector3 &begin_position = p_query_task.begin_position;
	const Vector3 &end_position = p_query_task.end_position;
	LocalVector<gd::NavigationPoly> &p_path_corridor = p_query_task.path_query_slot->path_corridor;<--- Variable 'p_path_corridor' can be declared with const

	_query_task_push_back_point_with_metadata(p_query_task, end_position, p_query_task.end_polygon);

	// Add mid points.
	int np_id = p_query_task.least_cost_id;
	while (np_id != -1 && p_path_corridor[np_id].back_navigation_poly_id != -1) {
		if (p_path_corridor[np_id].back_navigation_edge != -1) {
			int prev = p_path_corridor[np_id].back_navigation_edge;
			int prev_n = (p_path_corridor[np_id].back_navigation_edge + 1) % p_path_corridor[np_id].poly->points.size();
			Vector3 point = (p_path_corridor[np_id].poly->points[prev].pos + p_path_corridor[np_id].poly->points[prev_n].pos) * 0.5;

			_query_task_push_back_point_with_metadata(p_query_task, point, p_path_corridor[np_id].poly);
		} else {
			_query_task_push_back_point_with_metadata(p_query_task, p_path_corridor[np_id].entry, p_path_corridor[np_id].poly);
		}

		np_id = p_path_corridor[np_id].back_navigation_poly_id;
	}

	_query_task_push_back_point_with_metadata(p_query_task, begin_position, p_query_task.begin_polygon);
}

void NavMeshQueries3D::_query_task_post_process_nopostprocessing(NavMeshPathQueryTask3D &p_query_task) {
	const Vector3 &begin_position = p_query_task.begin_position;
	const Vector3 &end_position = p_query_task.end_position;
	LocalVector<gd::NavigationPoly> &p_path_corridor = p_query_task.path_query_slot->path_corridor;<--- Variable 'p_path_corridor' can be declared with const

	_query_task_push_back_point_with_metadata(p_query_task, end_position, p_query_task.end_polygon);

	// Add mid points.
	int np_id = p_query_task.least_cost_id;
	while (np_id != -1 && p_path_corridor[np_id].back_navigation_poly_id != -1) {
		_query_task_push_back_point_with_metadata(p_query_task, p_path_corridor[np_id].entry, p_path_corridor[np_id].poly);

		np_id = p_path_corridor[np_id].back_navigation_poly_id;
	}

	_query_task_push_back_point_with_metadata(p_query_task, begin_position, p_query_task.begin_polygon);
}

void NavMeshQueries3D::_query_task_find_start_end_positions(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::Polygon> &p_polygons) {
	// Find begin polyon and begin position closest to start position and
	// end polyon and end position closest to target position on the map.
	real_t begin_d = FLT_MAX;
	real_t end_d = FLT_MAX;

	Vector3 begin_position;
	Vector3 end_position;

	// Find the initial poly and the end poly on this map.
	for (const gd::Polygon &polygon : p_polygons) {
		// Only consider the polygon if it in a region with compatible layers.
		if ((p_query_task.navigation_layers & polygon.owner->navigation_layers) == 0) {
			continue;
		}

		// For each face check the distance between the origin/destination.
		for (size_t point_id = 2; point_id < polygon.points.size(); point_id++) {
			const Face3 face(polygon.points[0].pos, polygon.points[point_id - 1].pos, polygon.points[point_id].pos);

			Vector3 point = face.get_closest_point_to(p_query_task.start_position);
			real_t distance_to_point = point.distance_to(p_query_task.start_position);
			if (distance_to_point < begin_d) {
				begin_d = distance_to_point;
				p_query_task.begin_polygon = &polygon;
				begin_position = point;
			}

			point = face.get_closest_point_to(p_query_task.target_position);
			distance_to_point = point.distance_to(p_query_task.target_position);
			if (distance_to_point < end_d) {
				end_d = distance_to_point;
				p_query_task.end_polygon = &polygon;
				end_position = point;
			}
		}
	}

	p_query_task.begin_position = begin_position;
	p_query_task.end_position = end_position;
}

Vector3 NavMeshQueries3D::polygons_get_closest_point_to_segment(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) {
	bool use_collision = p_use_collision;
	Vector3 closest_point;
	real_t closest_point_distance = FLT_MAX;

	for (const gd::Polygon &polygon : p_polygons) {
		// For each face check the distance to the segment.
		for (size_t point_id = 2; point_id < polygon.points.size(); point_id += 1) {
			const Face3 face(polygon.points[0].pos, polygon.points[point_id - 1].pos, polygon.points[point_id].pos);
			Vector3 intersection_point;
			if (face.intersects_segment(p_from, p_to, &intersection_point)) {
				const real_t d = p_from.distance_to(intersection_point);
				if (!use_collision) {
					closest_point = intersection_point;
					use_collision = true;
					closest_point_distance = d;
				} else if (closest_point_distance > d) {
					closest_point = intersection_point;
					closest_point_distance = d;
				}
			}
			// If segment does not itersect face, check the distance from segment's endpoints.
			else if (!use_collision) {
				const Vector3 p_from_closest = face.get_closest_point_to(p_from);
				const real_t d_p_from = p_from.distance_to(p_from_closest);
				if (closest_point_distance > d_p_from) {
					closest_point = p_from_closest;
					closest_point_distance = d_p_from;
				}

				const Vector3 p_to_closest = face.get_closest_point_to(p_to);
				const real_t d_p_to = p_to.distance_to(p_to_closest);
				if (closest_point_distance > d_p_to) {
					closest_point = p_to_closest;
					closest_point_distance = d_p_to;
				}
			}
		}
		// Finally, check for a case when shortest distance is between some point located on a face's edge and some point located on a line segment.
		if (!use_collision) {
			for (size_t point_id = 0; point_id < polygon.points.size(); point_id += 1) {
				Vector3 a, b;

				Geometry3D::get_closest_points_between_segments(
						p_from,
						p_to,
						polygon.points[point_id].pos,
						polygon.points[(point_id + 1) % polygon.points.size()].pos,
						a,
						b);

				const real_t d = a.distance_to(b);
				if (d < closest_point_distance) {
					closest_point_distance = d;
					closest_point = b;
				}
			}
		}
	}

	return closest_point;
}

Vector3 NavMeshQueries3D::polygons_get_closest_point(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
	gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
	return cp.point;
}

Vector3 NavMeshQueries3D::polygons_get_closest_point_normal(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
	gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
	return cp.normal;
}

gd::ClosestPointQueryResult NavMeshQueries3D::polygons_get_closest_point_info(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
	gd::ClosestPointQueryResult result;
	real_t closest_point_distance_squared = FLT_MAX;

	for (const gd::Polygon &polygon : p_polygons) {
		Vector3 plane_normal = (polygon.points[1].pos - polygon.points[0].pos).cross(polygon.points[2].pos - polygon.points[0].pos);
		Vector3 closest_on_polygon;
		real_t closest = FLT_MAX;
		bool inside = true;
		Vector3 previous = polygon.points[polygon.points.size() - 1].pos;
		for (size_t point_id = 0; point_id < polygon.points.size(); ++point_id) {
			Vector3 edge = polygon.points[point_id].pos - previous;
			Vector3 to_point = p_point - previous;
			Vector3 edge_to_point_pormal = edge.cross(to_point);
			bool clockwise = edge_to_point_pormal.dot(plane_normal) > 0;
			// If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge.
			if (!clockwise) {
				inside = false;
				real_t point_projected_on_edge = edge.dot(to_point);
				real_t edge_square = edge.length_squared();

				if (point_projected_on_edge > edge_square) {
					real_t distance = polygon.points[point_id].pos.distance_squared_to(p_point);
					if (distance < closest) {
						closest_on_polygon = polygon.points[point_id].pos;
						closest = distance;
					}
				} else if (point_projected_on_edge < 0.f) {
					real_t distance = previous.distance_squared_to(p_point);
					if (distance < closest) {
						closest_on_polygon = previous;
						closest = distance;
					}
				} else {
					// If we project on this edge, this will be the closest point.
					real_t percent = point_projected_on_edge / edge_square;
					closest_on_polygon = previous + percent * edge;
					break;
				}
			}
			previous = polygon.points[point_id].pos;
		}

		if (inside) {
			Vector3 plane_normalized = plane_normal.normalized();
			real_t distance = plane_normalized.dot(p_point - polygon.points[0].pos);
			real_t distance_squared = distance * distance;
			if (distance_squared < closest_point_distance_squared) {
				closest_point_distance_squared = distance_squared;
				result.point = p_point - plane_normalized * distance;
				result.normal = plane_normal;
				result.owner = polygon.owner->owner_rid;

				if (Math::is_zero_approx(distance)) {
					break;
				}
			}
		} else {
			real_t distance = closest_on_polygon.distance_squared_to(p_point);
			if (distance < closest_point_distance_squared) {
				closest_point_distance_squared = distance;
				result.point = closest_on_polygon;
				result.normal = plane_normal;
				result.owner = polygon.owner->owner_rid;
			}
		}
	}

	return result;
}

RID NavMeshQueries3D::polygons_get_closest_point_owner(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
	gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
	return cp.owner;
}

void NavMeshQueries3D::_query_task_clip_path(NavMeshPathQueryTask3D &p_query_task, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) {
	const Vector3 &map_up = p_query_task.map_up;
	LocalVector<gd::NavigationPoly> &path_corridor = p_query_task.path_query_slot->path_corridor;
	Vector3 from = p_query_task.path_points[p_query_task.path_points.size() - 1];

	if (from.is_equal_approx(p_to_point)) {
		return;
	}

	Plane cut_plane;
	cut_plane.normal = (from - p_to_point).cross(map_up);
	if (cut_plane.normal == Vector3()) {
		return;
	}
	cut_plane.normal.normalize();
	cut_plane.d = cut_plane.normal.dot(from);

	while (from_poly != p_to_poly) {
		Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
		Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;

		ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
		from_poly = &path_corridor[from_poly->back_navigation_poly_id];

		if (!pathway_start.is_equal_approx(pathway_end)) {
			Vector3 inters;
			if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
				if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(p_query_task.path_points[p_query_task.path_points.size() - 1])) {
					_query_task_push_back_point_with_metadata(p_query_task, inters, from_poly->poly);
				}
			}
		}
	}
}

LocalVector<uint32_t> NavMeshQueries3D::get_simplified_path_indices(const LocalVector<Vector3> &p_path, real_t p_epsilon) {
	p_epsilon = MAX(0.0, p_epsilon);
	real_t squared_epsilon = p_epsilon * p_epsilon;

	LocalVector<uint32_t> simplified_path_indices;
	simplified_path_indices.reserve(p_path.size());
	simplified_path_indices.push_back(0);
	simplify_path_segment(0, p_path.size() - 1, p_path, squared_epsilon, simplified_path_indices);
	simplified_path_indices.push_back(p_path.size() - 1);

	return simplified_path_indices;
}

void NavMeshQueries3D::simplify_path_segment(int p_start_inx, int p_end_inx, const LocalVector<Vector3> &p_points, real_t p_epsilon, LocalVector<uint32_t> &r_simplified_path_indices) {
	Vector3 path_segment[2] = { p_points[p_start_inx], p_points[p_end_inx] };

	real_t point_max_distance = 0.0;
	int point_max_index = 0;

	for (int i = p_start_inx; i < p_end_inx; i++) {
		const Vector3 &checked_point = p_points[i];

		const Vector3 closest_point = Geometry3D::get_closest_point_to_segment(checked_point, path_segment);
		real_t distance_squared = closest_point.distance_squared_to(checked_point);

		if (distance_squared > point_max_distance) {
			point_max_index = i;
			point_max_distance = distance_squared;
		}
	}

	if (point_max_distance > p_epsilon) {
		simplify_path_segment(p_start_inx, point_max_index, p_points, p_epsilon, r_simplified_path_indices);
		r_simplified_path_indices.push_back(point_max_index);
		simplify_path_segment(point_max_index, p_end_inx, p_points, p_epsilon, r_simplified_path_indices);
	}
}

#endif // _3D_DISABLED