1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986 | /**************************************************************************/
/* variant.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef VARIANT_H
#define VARIANT_H
#include "core/core_string_names.h"
#include "core/input/input_enums.h"
#include "core/io/ip_address.h"
#include "core/math/aabb.h"
#include "core/math/basis.h"
#include "core/math/color.h"
#include "core/math/face3.h"
#include "core/math/plane.h"
#include "core/math/projection.h"
#include "core/math/quaternion.h"
#include "core/math/rect2.h"
#include "core/math/rect2i.h"
#include "core/math/transform_2d.h"
#include "core/math/transform_3d.h"
#include "core/math/vector2.h"
#include "core/math/vector2i.h"
#include "core/math/vector3.h"
#include "core/math/vector3i.h"
#include "core/math/vector4.h"
#include "core/math/vector4i.h"
#include "core/object/object_id.h"
#include "core/os/keyboard.h"
#include "core/string/node_path.h"
#include "core/string/ustring.h"
#include "core/templates/paged_allocator.h"
#include "core/templates/rid.h"
#include "core/variant/array.h"
#include "core/variant/callable.h"
#include "core/variant/dictionary.h"
class Object;
class RefCounted;
template <typename T>
class Ref;
struct PropertyInfo;
struct MethodInfo;
typedef Vector<uint8_t> PackedByteArray;
typedef Vector<int32_t> PackedInt32Array;
typedef Vector<int64_t> PackedInt64Array;
typedef Vector<float> PackedFloat32Array;
typedef Vector<double> PackedFloat64Array;
typedef Vector<real_t> PackedRealArray;
typedef Vector<String> PackedStringArray;
typedef Vector<Vector2> PackedVector2Array;
typedef Vector<Vector3> PackedVector3Array;
typedef Vector<Color> PackedColorArray;
typedef Vector<Vector4> PackedVector4Array;
class Variant {
public:
// If this changes the table in variant_op must be updated
enum Type {
NIL,
// atomic types
BOOL,
INT,
FLOAT,
STRING,
// math types
VECTOR2,
VECTOR2I,
RECT2,
RECT2I,
VECTOR3,
VECTOR3I,
TRANSFORM2D,
VECTOR4,
VECTOR4I,
PLANE,
QUATERNION,
AABB,
BASIS,
TRANSFORM3D,
PROJECTION,
// misc types
COLOR,
STRING_NAME,
NODE_PATH,
RID,
OBJECT,
CALLABLE,
SIGNAL,
DICTIONARY,
ARRAY,
// typed arrays
PACKED_BYTE_ARRAY,
PACKED_INT32_ARRAY,
PACKED_INT64_ARRAY,
PACKED_FLOAT32_ARRAY,
PACKED_FLOAT64_ARRAY,
PACKED_STRING_ARRAY,
PACKED_VECTOR2_ARRAY,
PACKED_VECTOR3_ARRAY,
PACKED_COLOR_ARRAY,
PACKED_VECTOR4_ARRAY,
VARIANT_MAX
};
enum {
// Maximum recursion depth allowed when serializing variants.
MAX_RECURSION_DEPTH = 1024,
};
private:
struct Pools {
union BucketSmall {
BucketSmall() {}
~BucketSmall() {}
Transform2D _transform2d;
::AABB _aabb;
};
union BucketMedium {
BucketMedium() {}
~BucketMedium() {}
Basis _basis;
Transform3D _transform3d;
};
union BucketLarge {
BucketLarge() {}
~BucketLarge() {}
Projection _projection;
};
static PagedAllocator<BucketSmall, true> _bucket_small;
static PagedAllocator<BucketMedium, true> _bucket_medium;
static PagedAllocator<BucketLarge, true> _bucket_large;
};
friend struct _VariantCall;
friend class VariantInternal;
// Variant takes 24 bytes when real_t is float, and 40 bytes if double.
// It only allocates extra memory for AABB/Transform2D (24, 48 if double),
// Basis/Transform3D (48, 96 if double), Projection (64, 128 if double),
// and PackedArray/Array/Dictionary (platform-dependent).
Type type = NIL;
struct ObjData {
ObjectID id;
Object *obj = nullptr;
void ref(const ObjData &p_from);
void ref_pointer(Object *p_object);
void ref_pointer(RefCounted *p_object);
void unref();
template <typename T>
_ALWAYS_INLINE_ void ref(const Ref<T> &p_from) {
if (p_from.is_valid()) {
ref(ObjData{ p_from->get_instance_id(), p_from.ptr() });
} else {
unref();
}
}
};
/* array helpers */
struct PackedArrayRefBase {
SafeRefCount refcount;
_FORCE_INLINE_ PackedArrayRefBase *reference() {
if (refcount.ref()) {
return this;
} else {
return nullptr;
}
}
static _FORCE_INLINE_ PackedArrayRefBase *reference_from(PackedArrayRefBase *p_base, PackedArrayRefBase *p_from) {
if (p_base == p_from) {
return p_base; //same thing, do nothing
}
if (p_from->reference()) {
if (p_base->refcount.unref()) {
memdelete(p_base);
}
return p_from;
} else {
return p_base; //keep, could not reference new
}
}
static _FORCE_INLINE_ void destroy(PackedArrayRefBase *p_array) {
if (p_array->refcount.unref()) {
memdelete(p_array);
}
}
_FORCE_INLINE_ virtual ~PackedArrayRefBase() {} //needs virtual destructor, but make inline
};
template <typename T>
struct PackedArrayRef : public PackedArrayRefBase {
Vector<T> array;
static _FORCE_INLINE_ PackedArrayRef<T> *create() {
return memnew(PackedArrayRef<T>);
}
static _FORCE_INLINE_ PackedArrayRef<T> *create(const Vector<T> &p_from) {
return memnew(PackedArrayRef<T>(p_from));
}
static _FORCE_INLINE_ const Vector<T> &get_array(PackedArrayRefBase *p_base) {
return static_cast<PackedArrayRef<T> *>(p_base)->array;
}
static _FORCE_INLINE_ Vector<T> *get_array_ptr(const PackedArrayRefBase *p_base) {
return &const_cast<PackedArrayRef<T> *>(static_cast<const PackedArrayRef<T> *>(p_base))->array;
}
_FORCE_INLINE_ PackedArrayRef(const Vector<T> &p_from) {<--- Struct 'PackedArrayRef < uint8_t >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < uint8_t >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef < int32_t >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < int32_t >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef < int64_t >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < int64_t >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef < float >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < float >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef < double >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < double >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef < String >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < String >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef < Vector2 >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < Vector2 >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef < Vector3 >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < Vector3 >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef < Color >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < Color >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef < Vector4 >' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef < Vector4 >' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'PackedArrayRef' has a constructor with 1 argument that is not explicit. [+]Struct 'PackedArrayRef' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
array = p_from;<--- Variable 'array' is assigned in constructor body. Consider performing initialization in initialization list. [+]When an object of a class is created, the constructors of all member variables are called consecutively in the order the variables are declared, even if you don't explicitly write them to the initialization list. You could avoid assigning 'array' a value by passing the value to the constructor in the initialization list.
refcount.init();
}
_FORCE_INLINE_ PackedArrayRef() {
refcount.init();
}
};
/* end of array helpers */
_ALWAYS_INLINE_ ObjData &_get_obj();
_ALWAYS_INLINE_ const ObjData &_get_obj() const;
union {
bool _bool;
int64_t _int;
double _float;
Transform2D *_transform2d;
::AABB *_aabb;
Basis *_basis;
Transform3D *_transform3d;
Projection *_projection;
PackedArrayRefBase *packed_array;
void *_ptr; //generic pointer
uint8_t _mem[sizeof(ObjData) > (sizeof(real_t) * 4) ? sizeof(ObjData) : (sizeof(real_t) * 4)]{ 0 };
} _data alignas(8);
void reference(const Variant &p_variant);
void _clear_internal();
_FORCE_INLINE_ void clear() {
static const bool needs_deinit[Variant::VARIANT_MAX] = {
false, //NIL,
false, //BOOL,
false, //INT,
false, //FLOAT,
true, //STRING,
false, //VECTOR2,
false, //VECTOR2I,
false, //RECT2,
false, //RECT2I,
false, //VECTOR3,
false, //VECTOR3I,
true, //TRANSFORM2D,
false, //VECTOR4,
false, //VECTOR4I,
false, //PLANE,
false, //QUATERNION,
true, //AABB,
true, //BASIS,
true, //TRANSFORM,
true, //PROJECTION,
// misc types
false, //COLOR,
true, //STRING_NAME,
true, //NODE_PATH,
false, //RID,
true, //OBJECT,
true, //CALLABLE,
true, //SIGNAL,
true, //DICTIONARY,
true, //ARRAY,
// typed arrays
true, //PACKED_BYTE_ARRAY,
true, //PACKED_INT32_ARRAY,
true, //PACKED_INT64_ARRAY,
true, //PACKED_FLOAT32_ARRAY,
true, //PACKED_FLOAT64_ARRAY,
true, //PACKED_STRING_ARRAY,
true, //PACKED_VECTOR2_ARRAY,
true, //PACKED_VECTOR3_ARRAY,
true, //PACKED_COLOR_ARRAY,
true, //PACKED_VECTOR4_ARRAY,
};
if (unlikely(needs_deinit[type])) { // Make it fast for types that don't need deinit.
_clear_internal();
}
type = NIL;
}
static void _register_variant_operators();
static void _unregister_variant_operators();
static void _register_variant_methods();
static void _unregister_variant_methods();
static void _register_variant_setters_getters();
static void _unregister_variant_setters_getters();
static void _register_variant_constructors();
static void _unregister_variant_destructors();
static void _register_variant_destructors();
static void _unregister_variant_constructors();
static void _register_variant_utility_functions();
static void _unregister_variant_utility_functions();
void _variant_call_error(const String &p_method, Callable::CallError &error);
// Avoid accidental conversion. If you reached this point, it's because you most likely forgot to dereference
// a Variant pointer (so add * like this: *variant_pointer).
Variant(const Variant *) {}<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Variant **) {}<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
public:
_FORCE_INLINE_ Type get_type() const {
return type;
}
static String get_type_name(Variant::Type p_type);
static Variant::Type get_type_by_name(const String &p_type_name);
static bool can_convert(Type p_type_from, Type p_type_to);
static bool can_convert_strict(Type p_type_from, Type p_type_to);
static bool is_type_shared(Variant::Type p_type);
bool is_ref_counted() const;
_FORCE_INLINE_ bool is_num() const {
return type == INT || type == FLOAT;
}
_FORCE_INLINE_ bool is_string() const {
return type == STRING || type == STRING_NAME;
}
_FORCE_INLINE_ bool is_array() const {
return type >= ARRAY;
}
bool is_shared() const;
bool is_zero() const;
bool is_one() const;
bool is_null() const;
bool is_read_only() const;
// Make sure Variant is not implicitly cast when accessing it with bracket notation (GH-49469).
Variant &operator[](const Variant &p_key) = delete;
const Variant &operator[](const Variant &p_key) const = delete;
operator bool() const;
operator int64_t() const;
operator int32_t() const;
operator int16_t() const;
operator int8_t() const;
operator uint64_t() const;
operator uint32_t() const;
operator uint16_t() const;
operator uint8_t() const;
operator ObjectID() const;
operator char32_t() const;
operator float() const;
operator double() const;
operator String() const;
operator StringName() const;
operator Vector2() const;
operator Vector2i() const;
operator Rect2() const;
operator Rect2i() const;
operator Vector3() const;
operator Vector3i() const;
operator Vector4() const;
operator Vector4i() const;
operator Plane() const;
operator ::AABB() const;
operator Quaternion() const;
operator Basis() const;
operator Transform2D() const;
operator Transform3D() const;
operator Projection() const;
operator Color() const;
operator NodePath() const;
operator ::RID() const;
operator Object *() const;
operator Callable() const;
operator Signal() const;
operator Dictionary() const;
operator Array() const;
operator PackedByteArray() const;
operator PackedInt32Array() const;
operator PackedInt64Array() const;
operator PackedFloat32Array() const;
operator PackedFloat64Array() const;
operator PackedStringArray() const;
operator PackedVector3Array() const;
operator PackedVector2Array() const;
operator PackedColorArray() const;
operator PackedVector4Array() const;
operator Vector<::RID>() const;
operator Vector<Plane>() const;
operator Vector<Face3>() const;
operator Vector<Variant>() const;
operator Vector<StringName>() const;
// some core type enums to convert to
operator Side() const;
operator Orientation() const;
operator IPAddress() const;
Object *get_validated_object() const;
Object *get_validated_object_with_check(bool &r_previously_freed) const;
Variant(bool p_bool);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(int64_t p_int64);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(int32_t p_int32);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(int16_t p_int16);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(int8_t p_int8);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(uint64_t p_uint64);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(uint32_t p_uint32);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(uint16_t p_uint16);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(uint8_t p_uint8);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(float p_float);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(double p_double);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const ObjectID &p_id);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const String &p_string);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const StringName &p_string);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const char *const p_cstring);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const char32_t *p_wstring);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector2 &p_vector2);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector2i &p_vector2i);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Rect2 &p_rect2);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Rect2i &p_rect2i);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector3 &p_vector3);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector3i &p_vector3i);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector4 &p_vector4);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector4i &p_vector4i);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Plane &p_plane);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const ::AABB &p_aabb);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Quaternion &p_quat);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Basis &p_matrix);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Transform2D &p_transform);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Transform3D &p_transform);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Projection &p_projection);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Color &p_color);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const NodePath &p_node_path);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const ::RID &p_rid);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Object *p_object);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Callable &p_callable);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Signal &p_signal);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Dictionary &p_dictionary);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Array &p_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedByteArray &p_byte_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedInt32Array &p_int32_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedInt64Array &p_int64_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedFloat32Array &p_float32_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedFloat64Array &p_float64_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedStringArray &p_string_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedVector2Array &p_vector2_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedVector3Array &p_vector3_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedColorArray &p_color_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const PackedVector4Array &p_vector4_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector<::RID> &p_array); // helper<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector<Plane> &p_array); // helper<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector<Face3> &p_face_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector<Variant> &p_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const Vector<StringName> &p_array);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
Variant(const IPAddress &p_address);<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
#define VARIANT_ENUM_CLASS_CONSTRUCTOR(m_enum) \
Variant(m_enum p_value) : \
type(INT) { \
_data._int = (int64_t)p_value; \
}
// Only enum classes that need to be bound need this to be defined.
VARIANT_ENUM_CLASS_CONSTRUCTOR(EulerOrder)<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
VARIANT_ENUM_CLASS_CONSTRUCTOR(JoyAxis)<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
VARIANT_ENUM_CLASS_CONSTRUCTOR(JoyButton)<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
VARIANT_ENUM_CLASS_CONSTRUCTOR(Key)<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
VARIANT_ENUM_CLASS_CONSTRUCTOR(KeyLocation)<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
VARIANT_ENUM_CLASS_CONSTRUCTOR(MIDIMessage)<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
VARIANT_ENUM_CLASS_CONSTRUCTOR(MouseButton)<--- Class 'Variant' has a constructor with 1 argument that is not explicit. [+]Class 'Variant' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
#undef VARIANT_ENUM_CLASS_CONSTRUCTOR
// If this changes the table in variant_op must be updated
enum Operator {
//comparison
OP_EQUAL,
OP_NOT_EQUAL,
OP_LESS,
OP_LESS_EQUAL,
OP_GREATER,
OP_GREATER_EQUAL,
//mathematic
OP_ADD,
OP_SUBTRACT,
OP_MULTIPLY,
OP_DIVIDE,
OP_NEGATE,
OP_POSITIVE,
OP_MODULE,
OP_POWER,
//bitwise
OP_SHIFT_LEFT,
OP_SHIFT_RIGHT,
OP_BIT_AND,
OP_BIT_OR,
OP_BIT_XOR,
OP_BIT_NEGATE,
//logic
OP_AND,
OP_OR,
OP_XOR,
OP_NOT,
//containment
OP_IN,
OP_MAX
};
static String get_operator_name(Operator p_op);
static void evaluate(const Operator &p_op, const Variant &p_a, const Variant &p_b, Variant &r_ret, bool &r_valid);
static _FORCE_INLINE_ Variant evaluate(const Operator &p_op, const Variant &p_a, const Variant &p_b) {
bool valid = true;
Variant res;
evaluate(p_op, p_a, p_b, res, valid);
return res;
}
static Variant::Type get_operator_return_type(Operator p_operator, Type p_type_a, Type p_type_b);
typedef void (*ValidatedOperatorEvaluator)(const Variant *left, const Variant *right, Variant *r_ret);
static ValidatedOperatorEvaluator get_validated_operator_evaluator(Operator p_operator, Type p_type_a, Type p_type_b);
typedef void (*PTROperatorEvaluator)(const void *left, const void *right, void *r_ret);
static PTROperatorEvaluator get_ptr_operator_evaluator(Operator p_operator, Type p_type_a, Type p_type_b);
void zero();
Variant duplicate(bool p_deep = false) const;
Variant recursive_duplicate(bool p_deep, int recursion_count) const;
/* Built-In Methods */
typedef void (*ValidatedBuiltInMethod)(Variant *base, const Variant **p_args, int p_argcount, Variant *r_ret);
typedef void (*PTRBuiltInMethod)(void *p_base, const void **p_args, void *r_ret, int p_argcount);
static bool has_builtin_method(Variant::Type p_type, const StringName &p_method);
static ValidatedBuiltInMethod get_validated_builtin_method(Variant::Type p_type, const StringName &p_method);
static PTRBuiltInMethod get_ptr_builtin_method(Variant::Type p_type, const StringName &p_method);
static MethodInfo get_builtin_method_info(Variant::Type p_type, const StringName &p_method);
static int get_builtin_method_argument_count(Variant::Type p_type, const StringName &p_method);
static Variant::Type get_builtin_method_argument_type(Variant::Type p_type, const StringName &p_method, int p_argument);
static String get_builtin_method_argument_name(Variant::Type p_type, const StringName &p_method, int p_argument);
static Vector<Variant> get_builtin_method_default_arguments(Variant::Type p_type, const StringName &p_method);
static bool has_builtin_method_return_value(Variant::Type p_type, const StringName &p_method);
static Variant::Type get_builtin_method_return_type(Variant::Type p_type, const StringName &p_method);
static bool is_builtin_method_const(Variant::Type p_type, const StringName &p_method);
static bool is_builtin_method_static(Variant::Type p_type, const StringName &p_method);
static bool is_builtin_method_vararg(Variant::Type p_type, const StringName &p_method);
static void get_builtin_method_list(Variant::Type p_type, List<StringName> *p_list);
static int get_builtin_method_count(Variant::Type p_type);
static uint32_t get_builtin_method_hash(Variant::Type p_type, const StringName &p_method);
void callp(const StringName &p_method, const Variant **p_args, int p_argcount, Variant &r_ret, Callable::CallError &r_error);
template <typename... VarArgs>
Variant call(const StringName &p_method, VarArgs... p_args) {
Variant args[sizeof...(p_args) + 1] = { p_args..., Variant() }; // +1 makes sure zero sized arrays are also supported.
const Variant *argptrs[sizeof...(p_args) + 1];
for (uint32_t i = 0; i < sizeof...(p_args); i++) {
argptrs[i] = &args[i];
}
Callable::CallError cerr;
Variant ret;
callp(p_method, sizeof...(p_args) == 0 ? nullptr : (const Variant **)argptrs, sizeof...(p_args), ret, cerr);
if (cerr.error != Callable::CallError::CALL_OK) {
_variant_call_error(p_method, cerr);
}
return ret;
}
void call_const(const StringName &p_method, const Variant **p_args, int p_argcount, Variant &r_ret, Callable::CallError &r_error);
static void call_static(Variant::Type p_type, const StringName &p_method, const Variant **p_args, int p_argcount, Variant &r_ret, Callable::CallError &r_error);
static String get_call_error_text(const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce);
static String get_call_error_text(Object *p_base, const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce);
static String get_callable_error_text(const Callable &p_callable, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce);
//dynamic (includes Object)
void get_method_list(List<MethodInfo> *p_list) const;
bool has_method(const StringName &p_method) const;
/* Constructors */
typedef void (*ValidatedConstructor)(Variant *r_base, const Variant **p_args);
typedef void (*PTRConstructor)(void *base, const void **p_args);
static int get_constructor_count(Variant::Type p_type);
static ValidatedConstructor get_validated_constructor(Variant::Type p_type, int p_constructor);
static PTRConstructor get_ptr_constructor(Variant::Type p_type, int p_constructor);
static int get_constructor_argument_count(Variant::Type p_type, int p_constructor);
static Variant::Type get_constructor_argument_type(Variant::Type p_type, int p_constructor, int p_argument);
static String get_constructor_argument_name(Variant::Type p_type, int p_constructor, int p_argument);
static void construct(Variant::Type, Variant &base, const Variant **p_args, int p_argcount, Callable::CallError &r_error);
static void get_constructor_list(Type p_type, List<MethodInfo> *r_list); //convenience
/* Destructors */
// Only ptrcall is available.
typedef void (*PTRDestructor)(void *base);
static PTRDestructor get_ptr_destructor(Variant::Type p_type);
static bool has_destructor(Variant::Type p_type);
/* Properties */
void set_named(const StringName &p_member, const Variant &p_value, bool &r_valid);
Variant get_named(const StringName &p_member, bool &r_valid) const;
typedef void (*ValidatedSetter)(Variant *base, const Variant *value);
typedef void (*ValidatedGetter)(const Variant *base, Variant *value);
static bool has_member(Variant::Type p_type, const StringName &p_member);
static Variant::Type get_member_type(Variant::Type p_type, const StringName &p_member);
static void get_member_list(Type p_type, List<StringName> *r_members);
static int get_member_count(Type p_type);
static ValidatedSetter get_member_validated_setter(Variant::Type p_type, const StringName &p_member);
static ValidatedGetter get_member_validated_getter(Variant::Type p_type, const StringName &p_member);
typedef void (*PTRSetter)(void *base, const void *value);
typedef void (*PTRGetter)(const void *base, void *value);
static PTRSetter get_member_ptr_setter(Variant::Type p_type, const StringName &p_member);
static PTRGetter get_member_ptr_getter(Variant::Type p_type, const StringName &p_member);
/* Indexing */
static bool has_indexing(Variant::Type p_type);
static Variant::Type get_indexed_element_type(Variant::Type p_type);
static uint32_t get_indexed_element_usage(Variant::Type p_type);
typedef void (*ValidatedIndexedSetter)(Variant *base, int64_t index, const Variant *value, bool *oob);
typedef void (*ValidatedIndexedGetter)(const Variant *base, int64_t index, Variant *value, bool *oob);
static ValidatedIndexedSetter get_member_validated_indexed_setter(Variant::Type p_type);
static ValidatedIndexedGetter get_member_validated_indexed_getter(Variant::Type p_type);
typedef void (*PTRIndexedSetter)(void *base, int64_t index, const void *value);
typedef void (*PTRIndexedGetter)(const void *base, int64_t index, void *value);
static PTRIndexedSetter get_member_ptr_indexed_setter(Variant::Type p_type);
static PTRIndexedGetter get_member_ptr_indexed_getter(Variant::Type p_type);
void set_indexed(int64_t p_index, const Variant &p_value, bool &r_valid, bool &r_oob);
Variant get_indexed(int64_t p_index, bool &r_valid, bool &r_oob) const;
uint64_t get_indexed_size() const;
/* Keying */
static bool is_keyed(Variant::Type p_type);
typedef void (*ValidatedKeyedSetter)(Variant *base, const Variant *key, const Variant *value, bool *valid);
typedef void (*ValidatedKeyedGetter)(const Variant *base, const Variant *key, Variant *value, bool *valid);
typedef bool (*ValidatedKeyedChecker)(const Variant *base, const Variant *key, bool *valid);
static ValidatedKeyedSetter get_member_validated_keyed_setter(Variant::Type p_type);
static ValidatedKeyedGetter get_member_validated_keyed_getter(Variant::Type p_type);
static ValidatedKeyedChecker get_member_validated_keyed_checker(Variant::Type p_type);
typedef void (*PTRKeyedSetter)(void *base, const void *key, const void *value);
typedef void (*PTRKeyedGetter)(const void *base, const void *key, void *value);
typedef uint32_t (*PTRKeyedChecker)(const void *base, const void *key);
static PTRKeyedSetter get_member_ptr_keyed_setter(Variant::Type p_type);
static PTRKeyedGetter get_member_ptr_keyed_getter(Variant::Type p_type);
static PTRKeyedChecker get_member_ptr_keyed_checker(Variant::Type p_type);
void set_keyed(const Variant &p_key, const Variant &p_value, bool &r_valid);
Variant get_keyed(const Variant &p_key, bool &r_valid) const;
bool has_key(const Variant &p_key, bool &r_valid) const;
/* Generic */
enum VariantSetError {
SET_OK,
SET_KEYED_ERR,
SET_NAMED_ERR,
SET_INDEXED_ERR
};
enum VariantGetError {
GET_OK,
GET_KEYED_ERR,
GET_NAMED_ERR,
GET_INDEXED_ERR
};
void set(const Variant &p_index, const Variant &p_value, bool *r_valid = nullptr, VariantSetError *err_code = nullptr);
Variant get(const Variant &p_index, bool *r_valid = nullptr, VariantGetError *err_code = nullptr) const;
bool in(const Variant &p_index, bool *r_valid = nullptr) const;
bool iter_init(Variant &r_iter, bool &r_valid) const;
bool iter_next(Variant &r_iter, bool &r_valid) const;
Variant iter_get(const Variant &r_iter, bool &r_valid) const;
void get_property_list(List<PropertyInfo> *p_list) const;
static void call_utility_function(const StringName &p_name, Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error);
static bool has_utility_function(const StringName &p_name);
typedef void (*ValidatedUtilityFunction)(Variant *r_ret, const Variant **p_args, int p_argcount);
typedef void (*PTRUtilityFunction)(void *r_ret, const void **p_args, int p_argcount);
static ValidatedUtilityFunction get_validated_utility_function(const StringName &p_name);
static PTRUtilityFunction get_ptr_utility_function(const StringName &p_name);
enum UtilityFunctionType {
UTILITY_FUNC_TYPE_MATH,
UTILITY_FUNC_TYPE_RANDOM,
UTILITY_FUNC_TYPE_GENERAL,
};
static UtilityFunctionType get_utility_function_type(const StringName &p_name);
static MethodInfo get_utility_function_info(const StringName &p_name);
static int get_utility_function_argument_count(const StringName &p_name);
static Variant::Type get_utility_function_argument_type(const StringName &p_name, int p_arg);
static String get_utility_function_argument_name(const StringName &p_name, int p_arg);
static bool has_utility_function_return_value(const StringName &p_name);
static Variant::Type get_utility_function_return_type(const StringName &p_name);
static bool is_utility_function_vararg(const StringName &p_name);
static uint32_t get_utility_function_hash(const StringName &p_name);
static void get_utility_function_list(List<StringName> *r_functions);
static int get_utility_function_count();
//argsVariant call()
bool operator==(const Variant &p_variant) const;
bool operator!=(const Variant &p_variant) const;
bool operator<(const Variant &p_variant) const;
uint32_t hash() const;
uint32_t recursive_hash(int recursion_count) const;
// By default, performs a semantic comparison. Otherwise, numeric/binary comparison (if appropriate).
bool hash_compare(const Variant &p_variant, int recursion_count = 0, bool semantic_comparison = true) const;
bool identity_compare(const Variant &p_variant) const;
bool booleanize() const;
String stringify(int recursion_count = 0) const;
String to_json_string() const;
static void get_constants_for_type(Variant::Type p_type, List<StringName> *p_constants);
static int get_constants_count_for_type(Variant::Type p_type);
static bool has_constant(Variant::Type p_type, const StringName &p_value);
static Variant get_constant_value(Variant::Type p_type, const StringName &p_value, bool *r_valid = nullptr);
static void get_enums_for_type(Variant::Type p_type, List<StringName> *p_enums);
static void get_enumerations_for_enum(Variant::Type p_type, const StringName &p_enum_name, List<StringName> *p_enumerations);
static int get_enum_value(Variant::Type p_type, const StringName &p_enum_name, const StringName &p_enumeration, bool *r_valid = nullptr);
static bool has_enum(Variant::Type p_type, const StringName &p_enum_name);
static StringName get_enum_for_enumeration(Variant::Type p_type, const StringName &p_enumeration);
typedef String (*ObjectDeConstruct)(const Variant &p_object, void *ud);
typedef void (*ObjectConstruct)(const String &p_text, void *ud, Variant &r_value);
String get_construct_string() const;
static void construct_from_string(const String &p_string, Variant &r_value, ObjectConstruct p_obj_construct = nullptr, void *p_construct_ud = nullptr);
void operator=(const Variant &p_variant); // only this is enough for all the other types
void operator=(Variant &&p_variant) {
if (unlikely(this == &p_variant)) {
return;
}
clear();
type = p_variant.type;
_data = p_variant._data;
p_variant.type = NIL;
}
static void register_types();
static void unregister_types();
Variant(const Variant &p_variant);
Variant(Variant &&p_variant) {
type = p_variant.type;
_data = p_variant._data;<--- Variable '_data' is assigned in constructor body. Consider performing initialization in initialization list. [+]When an object of a class is created, the constructors of all member variables are called consecutively in the order the variables are declared, even if you don't explicitly write them to the initialization list. You could avoid assigning '_data' a value by passing the value to the constructor in the initialization list.
p_variant.type = NIL;
}
_FORCE_INLINE_ Variant() {}
_FORCE_INLINE_ ~Variant() {
clear();
}
};
//typedef Dictionary Dictionary; no
//typedef Array Array;
template <typename... VarArgs>
Vector<Variant> varray(VarArgs... p_args) {
Vector<Variant> v;
Variant args[sizeof...(p_args) + 1] = { p_args..., Variant() }; // +1 makes sure zero sized arrays are also supported.<--- Variable 'args' can be declared with const
uint32_t argc = sizeof...(p_args);
if (argc > 0) {
v.resize(argc);
Variant *vw = v.ptrw();
for (uint32_t i = 0; i < argc; i++) {
vw[i] = args[i];
}
}
return v;
}
struct VariantHasher {
static _FORCE_INLINE_ uint32_t hash(const Variant &p_variant) { return p_variant.hash(); }
};
struct VariantComparator {
static _FORCE_INLINE_ bool compare(const Variant &p_lhs, const Variant &p_rhs) { return p_lhs.hash_compare(p_rhs); }
};
struct StringLikeVariantComparator {
static bool compare(const Variant &p_lhs, const Variant &p_rhs);
};
struct StringLikeVariantOrder {
static _ALWAYS_INLINE_ bool compare(const Variant &p_lhs, const Variant &p_rhs) {
if (p_lhs.is_string() && p_rhs.is_string()) {
return p_lhs.operator String() < p_rhs.operator String();
}
return p_lhs < p_rhs;
}
_ALWAYS_INLINE_ bool operator()(const Variant &p_lhs, const Variant &p_rhs) const {
return compare(p_lhs, p_rhs);
}
};
Variant::ObjData &Variant::_get_obj() {
return *reinterpret_cast<ObjData *>(&_data._mem[0]);
}
const Variant::ObjData &Variant::_get_obj() const {
return *reinterpret_cast<const ObjData *>(&_data._mem[0]);
}
template <typename... VarArgs>
String vformat(const String &p_text, const VarArgs... p_args) {
Variant args[sizeof...(p_args) + 1] = { p_args..., Variant() }; // +1 makes sure zero sized arrays are also supported.<--- Variable 'args' can be declared with const
Array args_array;
args_array.resize(sizeof...(p_args));
for (uint32_t i = 0; i < sizeof...(p_args); i++) {
args_array[i] = args[i];
}
bool error = false;
String fmt = p_text.sprintf(args_array, &error);
ERR_FAIL_COND_V_MSG(error, String(), String("Formatting error in string \"") + p_text + "\": " + fmt + ".");
return fmt;
}
template <typename... VarArgs>
Variant Callable::call(VarArgs... p_args) const {
Variant args[sizeof...(p_args) + 1] = { p_args..., 0 }; // +1 makes sure zero sized arrays are also supported.
const Variant *argptrs[sizeof...(p_args) + 1];
for (uint32_t i = 0; i < sizeof...(p_args); i++) {
argptrs[i] = &args[i];
}
Variant ret;
CallError ce;
callp(sizeof...(p_args) == 0 ? nullptr : (const Variant **)argptrs, sizeof...(p_args), ret, ce);
return ret;
}
template <typename... VarArgs>
Callable Callable::bind(VarArgs... p_args) const {
Variant args[sizeof...(p_args) + 1] = { p_args..., Variant() }; // +1 makes sure zero sized arrays are also supported.
const Variant *argptrs[sizeof...(p_args) + 1];
for (uint32_t i = 0; i < sizeof...(p_args); i++) {
argptrs[i] = &args[i];
}
return bindp(sizeof...(p_args) == 0 ? nullptr : (const Variant **)argptrs, sizeof...(p_args));
}
Variant &Array::Iterator::operator*() const {
if (unlikely(read_only)) {
*read_only = *element_ptr;
return *read_only;
}
return *element_ptr;
}
Variant *Array::Iterator::operator->() const {
if (unlikely(read_only)) {
*read_only = *element_ptr;
return read_only;
}
return element_ptr;
}
Array::Iterator &Array::Iterator::operator++() {
element_ptr++;
return *this;
}
Array::Iterator &Array::Iterator::operator--() {
element_ptr--;
return *this;
}
const Variant &Array::ConstIterator::operator*() const {
if (unlikely(read_only)) {
*read_only = *element_ptr;
return *read_only;
}
return *element_ptr;
}
const Variant *Array::ConstIterator::operator->() const {
if (unlikely(read_only)) {
*read_only = *element_ptr;
return read_only;
}
return element_ptr;
}
Array::ConstIterator &Array::ConstIterator::operator++() {
element_ptr++;
return *this;
}
Array::ConstIterator &Array::ConstIterator::operator--() {
element_ptr--;
return *this;
}
#endif // VARIANT_H
|